• 제목/요약/키워드: Smoke front

검색결과 32건 처리시간 0.02초

Laser와 열전대를 이용한 연기선단의 위치 추적 비교에 관한 연구 (The tracking of a smoke front under a ceiling by a laser sheet and thermocouples)

  • 김명배;한용식;윤명오;김진곤
    • 한국화재소방학회논문지
    • /
    • 제12권3호
    • /
    • pp.11-20
    • /
    • 1998
  • 천장아래에 형성된 연기흐름을 대상으로 Laser 평면광과 열전대를 이용하여 연기선단의 위치를 추적하였다. 새로운 실험방법을 이용하여 연기선단의 도착순간을 열전대의 온도신호로부터 판단하는 종래의 직관적 기준을 평가하였다. 이러한 실험방법에서 사용된 Laser 평면광은 연기를 가시화 하기 위한 종래의 여러방법에 비교하여 뚜렷한 장점들이 있음을 입증하였다.

  • PDF

유동에 의한 연층 확산에 관한 실험적 연구 (An experimental study of convective smoke filling)

  • 김명배;한용식
    • 한국화재소방학회논문지
    • /
    • 제11권3호
    • /
    • pp.3-14
    • /
    • 1997
  • An experimental investigation of smoke spread in a corridor is made using thermocouples and visualization technique with a laser beam sheet. A speed of smoke front under a ceiling is measured by thermocouple trees. Visualization of the ceiling jet formation and of smoke filling process is carried out to observe lowering of the smoke layer. From the results, a large-scale convective motion the corridor plays dominant roles for smoke spread from visualized photos together with temperature records. A circulating motion of fluid transports some smokes to some regions where its momentum is effective. It is therefore showed that the conventional concept of lowering smoke with two-layer zone model has some restrictions for the corridor because the lowering of smoke layer has been thought to be mass transport due to relatively small scale motion such as decrease of buoyancy, mass diffusion and momentum exchange.

  • PDF

평판하 연기선단의 가시화 (A Visualization of Smoke Front under a Horizontal Plate)

  • 한용식;김명배;오광철;유상필
    • 한국화재소방학회논문지
    • /
    • 제15권1호
    • /
    • pp.41-46
    • /
    • 2001
  • 수평 평판과 충돌하는 제트에 의해 생성되는 연기유동을 관찰하기 위해 질소가스네 kerosene 연기입자를 띄워 유동장을 가시화하였다. 광원으로는 아르곤-이온 레이져 평면광이 사용되었다. Kerosene smoke의 산란 광에 의한 수직평면 상(image)과 수평평면 상을 고속 CCD 카메라와 비디오 카메라로 녹화하였으며, 얻어진 영상으로부터 연기선단의 순간속도 및 평균속도를 측정하였다.

  • PDF

SMOKE SPREAD IN A CORRIDOR

  • Kim, Myung-Bae;Han, Yong-Shik;Park, Jun-Seok
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.464-471
    • /
    • 1997
  • Convective smoke spread in a corridor is experimentally investigated using thermocouples and visualization technique with a laser beam sheet. The speed of smoke front under a ceiling is measured by a series of thermocouples. Visualization of the ceiling jet formation and of smoke filling process is carried out to observe the lowering of a smoke layer. From the results, a large-scale convective motion plays dominant roles for smoke spread in the vicinity of the end of the corridor from visualized photos along with temperature records. The large-scale convective motion of the smoke is generated from the impingement of the ceiling jet front on the end of the corridor, and thus turning the flows toward the floor. Such a circulating motion of fluid transports some smoke to some region where its momentum is effective. It is therefore shown that the conventional concept of lowering smoke in the two-layer zone model has some restrictions for the corridor because the lowering of smoke layer has been thought to be mass transport due to relatively small scale motions such as the decrease of buoyancy, mass diffusion and momentum exchanges.

  • PDF

터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation)

  • 김충익;유홍선;이성룡;박현태
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

터널 화재시 터널 단면의 종횡비에 따른 연기 거동에 관한 (An Experimental Study of Smoke Movement in Tunnel Fires with Aspect Ratio of Tunnel Cross Section)

  • 이성룡;유홍선;김충익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.115-120
    • /
    • 2003
  • In this study, smoke movement in tunnel fires was investigated with various aspect ratio(0.5, 0.667, 1.0, 1.5, 2.0) of tunnel cross section. Reduced-scale experiments were carried out under the Froude scaling using 8.27 kW ethanol pool fire. Temperatures were measured under the ceiling and vertical direction along the center of the tunnel. Smoke front velocity and temperature decrease rate were reduced as higher aspect ratio of the tunnel cross-section. Smoke movement was evaluated by analysis of vertical temperature distribution 3 m downstream from the fire source. Elevation of smoke interface according to N percent rule was under about 60% of tunnel height.

  • PDF

터널화재시 연기 거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires)

  • 이성룡;김충익;유홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, reduced-scale experiments were conducted to understand smoke movements in tunnel fires with the natural ventilation. The 1/20 scale experiments were conducted under the Froude scaling since the smoke movement in tunnels is governed by buoyancy force. Six cases of experiments(pool diameter is 6.5cm, 7.3cm, 8.3cm, 10cm, l2.5cm and l5.4cm), in which vertical vents positioned 1m from the fire source symmetrically, were conducted in order to evaluate the effect of the vent on smoke movement. In case of heat release rate under 2MW, smoke front reached to the tunnel exit about 20 see delayed with ventilation and the smoke velocity was proportional to the power of the heat release rate. Temperature after the vent was lower than without vent. In case of l5.4cm pool, the temperature difference was about $50^{\circ}C$. It was confirmed that the thickness of smoke layer was maintained uniformly under the 35% height of tunnel through the visualized smoke flow by a laser sheet and the digital camcoder.

  • PDF

수직갱이 설치된 터널내 화재시 연기거동에 관한 실험적 연구 (An Experimental Study of Smoke Movement in Tunnel Fires with a Vertical Shaft)

  • 이성룡;유홍선;김충익
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.135-141
    • /
    • 2004
  • The present paper concerns a smoke movement in a tunnel fire with a vertical shaft. The model tunnel measured 13.4m long, 0.4m wide and 0.4m high. The cross section is 1: 20 of a full scale tunnel. Ethanol was used as a fuel. The fire size in model tests varied from 1.35 kW to 13.37 kW, which corresponds to full scale fires of 2.41 to 23.91 MW. Smoke front velocity and temperatrue were decreased due to the vertical shaft install. Temperature was reduced maximum about 2$0^{\circ}C$ at ceiling and about 23$^{\circ}C$ at vertical position. CO concentration was reduced as the vent width widened. When vent width was more than 15 cm, CO concentration was not reached 100 ppm. Descent degree of the smoke layer was confirmed through the visualization.