• Title/Summary/Keyword: Smoke exhaust system

Search Result 135, Processing Time 0.019 seconds

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends (압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구)

  • JAESUNG KWON;BEOMSOO KIM;JEONGHYEON YANG
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Comparison of PM2.5 Concentrations before and after Smoke-free Policy in Some Indoor Sports Facilities in Seoul (겨울철 서울시 일부 실내스포츠시설에서 금연정책 실시 전후 PM2.5 농도 비교)

  • Kim, Yoonjee;Lee, Kiyoung;Kim, Seung Won
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.267-274
    • /
    • 2018
  • Objectives: This study examined the impact of a smoke-free policy on indoor air quality at indoor recreation facilities by assessing $PM_{2.5}$ concentrations before and after the implementation of the new policy. Methods: Using real-time monitors, $PM_{2.5}$ concentrations were measured in 50 billiard rooms and 50 golf simulator rooms in Seoul, Korea. The characteristics of the indoor recreation facilities, smoking status, and atmospheric conditions were recorded at the same time.After the enforcement of a smoke-free policy, $PM_{2.5}$ concentrations, installation of smoking room, and smoking status were examined when the facilities were revisited. Results: Almost a half of the billiard rooms and over 80% of golf simulator rooms were located underground. Seventy percent of the billiard rooms and one hundred percent of the golf simulator rooms were equipped with a local exhaust ventilation system. After the implementation of the smoke-free policy, 46% of the billiard rooms and 20% of the golf simulator rooms newly installed a smoking room. In the billiard rooms with a newly-installed smoking room, the $PM_{2.5}$ concentrations decreased from 97.9 to $45.6{\mu}g/m^3$ after the implementation of the smoke-free policy. The same change of 29.0 to $ 26.3{\mu}g/m^3$ was not statistically significant in golf simulator rooms. Indoor $PM_{2.5}$ concentrations were correlated with outdoor $PM_{2.5}$ concentrations, number of smokers, and number of people in the room. Conclusions: The smoke-free policy for indoor recreation facilities was not effective at making the indoor spaces free from second hand smoke. Although a few billiard rooms installed a smoking room, indoor $PM_{2.5}$ concentrations were still higher than those of outdoor $PM_{2.5}$ or atmospheric $PM_{2.5}$. Stricter enforcement of the smoke-free policy should be achieved to prevent secondhand smoke exposure.

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

Prediction of the Fire Curtain Effect through a Numerical Simulation of a Reduced Scale Model for Fires in Theaters (공연장 화재 축소모형의 전산시뮬레이션을 통한 방화막 영향 예측)

  • Kim, Dong Hwan;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2018
  • Although a fire curtain plays an important role in preventing smoke from spreading to the auditorium in a theater fire, there has been insufficient research on fire curtains. In this study, to check the accuracy of numerical simulation, for previous experiments using a reduced scale model, a numerical simulation was carried out, and the results were compared with previous experimental data. The fire curtain effect was then predicted numerically. A Fire Dynamics Simulator (FDS) was used, and the natural exhaust vent sizes were set to ~10%, ~5%, and ~1% of the stage floor area. The smoke movement was visualized, and the mass flow rates and temperatures were measured and analyzed. In addition, the law of similarity was used to examine the influence of a fire curtain in a real scale theater fire. Without the fire curtain, the present numerical simulation results were in agreement with the previous experimental data within reasonable accuracy. Meanwhile, the fire curtain affects the mass flow rates through the natural exhaust vent and proscenium opening, as well as the start time of soot outflow to the auditorium. Overall, the present results can be used to develop a fire curtain system.

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.

A Study on Diesel Engine Performance with Ar and $CO_2$ Addition (Ar과 $CO_2$ 첨가에 따른 디젤기관의 성능에 관한 연구)

  • 정영식;이상만;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.93-99
    • /
    • 1997
  • The re quest to develop the engines that are able to run without air or with very little oxygen condition is raised with the interest of ocean science or the mines. This research had already be gun before the world war II, but had been stagnant owing to the appearance of nuclear power. Recycle diesel engines have ability to run under the above mentioned condition the recycle diesel engine recirculates exhaust gases into intake port and consumes additional oxygen supplied by oxygen tank. Carbon dioxide is controlled by the absorber. The combustion and emission characteristics of recycle diesel engines are quite different with conventional one because the working fluids of recycle diesel engines consist of Ar, $CO_2$ and $O_2$ as well as $N_2$. Recycle diesel engine is therefore different with general diesel engine from the viewpoint of intake air composition. It is required to investigate the effect of intake composition in the combustion and emission to know recycle diesel engine. In this study, NOx concentration, smoke and cylinder pressure are measured with the variation of Ar and $CO_2$ Reduces show that the addition of Ar reduces NOx but increases smoke. Otherwise $CO_2$ reduces smoke and NOX simultaneously. Only $CO_2$ increases the ignition delay and both gases increase fuel consumption Ar addition is superior to $CO_2$ addition for the performance of recycle diesel engine system but $CO_2$ has the avantage with respect to emission.

  • PDF

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

Basic Study on an Aftertreatment System of Diesel Particulate Matters with Electrostatic Precipitator and Cyclone (전기집진기와 사이클론을 응용한 디젤 입자상 물질의 후처리장치 기초연구)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.8-15
    • /
    • 2001
  • An aftertreatment system of diesel exhaust gas was attempted to extract particulate matters. The system consisted of a corona-less electrostatic precipitator to agglomerate soot particles and a counter-flow cyclone to collect them. When the effect of high voltage was examined at different configuration of electrode plates, the case of positive 15kV at both plates showed the maximum reduction of 38% in diesel smoke level. However, the back pressure became quite high as engine speed increased, so that minimizing pressure drop in cyclone should be studied with improving collection efficiency of soot particles.

  • PDF