DOI QR코드

DOI QR Code

An Experimental Study on Combustion and Emission Characteristics of a CI Diesel Engine Fueled with Pentanol/Diesel Blends

압축착화 디젤엔진에서 펜탄올/경유 혼합유의 연소 및 배기 특성에 관한 실험적 연구

  • JAESUNG KWON (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • BEOMSOO KIM (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • JEONGHYEON YANG (Department of Mechanical System Engineering, Gyeongsang National University)
  • 권재성 (경상국립대학교 기계시스템공학과) ;
  • 김범수 (경상국립대학교 기계시스템공학과) ;
  • 양정현 (경상국립대학교 기계시스템공학과)
  • Received : 2024.01.31
  • Accepted : 2024.02.19
  • Published : 2024.02.28

Abstract

In this study, combustion experiments were conducted to assess engine performance and exhaust gas characteristics using four blends of 1-pentanol and diesel as fuel in a naturally aspirated 4-stroke diesel engine. The blending ratios of 1-pentanol were 5, 10, 15, and 20% by volume. The experiments were carried out under four different engine torque conditions (6, 8, 10, and 12 Nm) while maintaining a constant engine speed of 2,000 rpm for all fuel types. The results showed that the use of 1-pentanol/diesel blended fuel generally led to a decrease in brake thermal efficiency, attributed to the low calorific value of the blend and the cooling effect due to the latent heat of vaporization. Additionally, both brake specific energy consumption and brake specific fuel consumption increased. However, the use of the blended fuel resulted in a general decrease in NOx concentration, a decrease in CO concentration except some conditions, and a reduction in smoke opacity across all conditions.

Keywords

References

  1. Y. Devarajan, D. B. Munuswamy, B. Nagappan, and A. K. Pandian , "Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine", Heat and Mass Transfer, Vol. 54, 2018, pp. 1803-1811, doi: https://doi.org/10.1007/s00231-018-2274-x. 
  2. S. K. Kim and D. J. Yoo, "A study on the driving characteristics of microbial fuel cell using mixed strains in domestic Wastewater", Journal of Hydrogen and New Energy, Vol. 32, No. 6, 2021, pp. 506-513, doi: https://doi.org/10.7316/KHNES.2021.32.6.506. 
  3. H. K. Imdadul, H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, A. Alabdulkarem, M. M. Rashed, Y. H. Teoh, and H. G. How, "Higher alcohol-biodiesel-diesel blends: an approach for improving the performance, emission, and combustion of a light-duty diesel engine", Energy Conversion and Management, Vol. 111, 2016, pp. 174-185, doi: https://doi.org/10.1016/j.enconman.2015.12.066. 
  4. S. Kim, J. K. Kim, C. K. Park, and J. H. Ha, "Study on fuel cha racteristics depending on mixing ratio of bio-butanol and bio-ethanol", Journal of Hydrogen and New Energy, Vol. 28, No. 6, 2017, pp. 704-711, doi: https://doi.org/10.7316/KHNES.2017.28.6.704. 
  5. K. N. Balan, U. Yashvanth, P. B. Devi, T. Arvind, H. Nelson, and Y. Devarajan, "Investigation on emission characteristics of alcohol biodiesel blended diesel engine", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 41, No. 15, 2019, pp. 1879-1889, doi: https://doi.org/10.1080/15567036.2018.1549166. 
  6. C. O. Park, J. Yang, B. Kim and J. Kwon, "Investigation of the combustion and emission characteristics of 1-octanol/diesel fuel blends in a direct injection diesel engine", Journal of Hydrogen and New Energy, Vol. 34, No. 1, 2023, pp. 69-76, doi: https://doi.org/10.7316/KHNES.2023.34.1.69. 
  7. Z. Huang, H. Lu, D. Jiang, K. Zeng, B. Liu, J. Zhang, and X. Wang, "Combustion behaviors of a compression-ignition engine fuelled with diesel/methanol blends under various fuel delivery advance angles", Bioresource Technology, Vol. 95, No. 3, 2004, pp. 331-341, doi: https://doi.org/10.1016/j.biortech.2004.02.018. 
  8. M. Lapuerta, O. Armas, and J. M. Herreros, "Emissions from a diesel-bioethanol blend in an automotive diesel engine", Fuel, Vol. 87, No. 1, 2008, pp. 25-31, doi: https://doi.org/10.1016/j.fuel.2007.04.007. 
  9. Q. Wang, J. Ni, and R. Huang, "The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions", Fuel, Vol. 309, 2022, pp. 122129, doi: https://doi.org/10.1016/j.fuel.2021.122129. 
  10. J. Campos-Fernandez, J. M. Arnal, J. Gomez, N. Lacalle, and M. P. Dorado, "Performance tests of a diesel engine fueled with pentanol/diesel fuel blends", Fuel, Vol. 107, 2013, pp. 866-872, doi: https://doi.org/10.1016/j.fuel.2013.01.066. 
  11. Sidharth and N. Kumar, "Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 42, No. 18, 2020, pp. 2277-2296, doi: https://doi.org/10.1080/15567036.2019.1607940. 
  12. Radheshyam, K. Santhosh, and G. N. Kumar, "Effect of 1-pentanol addition and EGR on the combustion, performance and emission characteristic of a CRDI diesel engine", Renewable Energy, Vol. 145, 2020, pp. 925-936, doi: https://doi.org/10.1016/j.renene.2019.06.043. 
  13. V. Vinodkumar and A. Karthikeyan, "Effect of manifold injection of n-decanol on neem biodiesel fuelled CI engine", Energy, Vol. 241, 2022, pp. 122856, doi: https://doi.org/10.1016/j.energy.2021.122856. 
  14. G. Valentino, F. E. Corcione, S. E. Iannuzzi, and S. Serra, "Experimental study on performance and emissions of a high speed diesel engine fuelled with n-butanol diesel blends under premixed low temperature combustion", Fuel, Vol. 92, No. 1, 2012, pp. 295-307, doi: https://doi.org/10.1016/j.fuel.2011.07.035. 
  15. D. Antoni, V. V. Zverlov, and W. H. Schwarz, "Biofuels from microbes", Applied Microbiology and Biotechnology, Vol. 77, 2007, pp. 23-35, doi: https://doi.org/10.1007/s00253-007-1163-x. 
  16. S. H. Desai, C. A. Rabinovitch-Deere, Z. Fan, and S. Atsumi, "Isobutanol production from cellobionic acid in Escherichia coli", Microbial Cell Factories, Vol. 14, 2015, pp. 52, doi: https://doi.org/10.1186/s12934-015-0232-6. 
  17. B. Gainey and B. Lawler, "The role of alcohol biofuels in advanced combustion: an analysis", Fuel, Vol. 283, 2021, pp. 118915, doi: https://doi.org/10.1016/j.fuel.2020.118915.