• Title/Summary/Keyword: Smoke control system

Search Result 234, Processing Time 0.024 seconds

A Study on the Design of Evacuation Route at Subway Station Using Simulation Analysis (Simulation 분석을 통한 지하철 역사 피난동선 설계 방안에 관한 연구)

  • Ham, Eun-Gu;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Since subway fire disaster at Daegu, Korea smoke control system and passengers evacuation distance has been focused to reform. Existing smoke control facilities need to expand volume of ventilation capacity however, the complicate subway station structure can hardly react dispersion of smokes from massive subway cabin fire. Smoke flow at platform level move upward thought vertical stairway and passengers evacuation goes with same direction. The victims of evacuees from subway station fire mainly due to exposure of heat radiation and smoke. The study demonstration the effect of downward evacuates stairway system by separating evacuation route to smoke movement pass way including saving times of evacuation.

A Legal Alternative for Effective Application of Pressurized Smoke Control System to Provide ′Smoke-free′ Access for Escape Shafts Used in High-Rise Building (국내 고층건물의 피난성능확보를 위한 급기가압방연(제연) 시스템의 제도개선연구)

  • 박형주;김상욱
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.49-56
    • /
    • 2001
  • There have been the current controversy over effectiveness of the pressurized smoke control systems, which are installed within escape shaft to provide 'smoke-free' access for escaping peoples. Therefore, many effective measures were given in this paper by means of the production of a design guide for various types of escape routes used in domestic buildings. The solutions were established on basis of both an investigating current door closing device application in existing facilities and global standardization for pressurized smoke control system, especially in British Standard. Finally, the design guidance for open door air velocity with introduction to three door protection clauses was presented on the basis of consideration of the safety and economical factor,

  • PDF

A Study on the Risk Assessment of the Underground Space -The Estimation of Smoke Reservoir Screen for Smoke Control in Subway Station Platform (지하공간의 위험성평가에 관한 연구 -지하철 역사내의 연기제어를 위한 제연경계벽의 효용성 평가)

  • Roh Sam-Kew;Hur Jun-Ho
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.103-109
    • /
    • 2004
  • The risk of underground space become an important issue of life safety thought the Taeku subway line Accident. It is essential to study of smoke control screen to minimize the damage of human life because of smoke passage and passenger evacuation routes are on the same vertical and dispersion movement. The Fire modeling result shows the effect of fire control screen can save the evacuation time about 2-2.5 times compare to existing the system However, The designs of fire control screen need to be complied with smoke control ventilation system to present optimum design and the position of installation.

An Addressable Type Smoke Detect System Implementation to detect the Fire on a Ship (선박화재감지를 위한 Addressable Type Smoke Detect System 구현)

  • Kim, Tai-Suk;Kim, Jong-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2543-2548
    • /
    • 2011
  • The Smoke Detect System is setup to extinguish early a fire on the large ship like as the cargo ship and Bulk Carrier at sea. The Addressable Type Smoke Detect System that keeps the advantages and dispenses with the disadvantages of the existing conventional type system is composed of only one electrical cords. In this paper, we make the Smoke Detect System of an addressable type and implement to control it using ATmega Micro-controller and evaluate it.

Standardization of the Performance Test Procedure for Smoke Control System (제연설비 성능시험방법의 표준화)

  • Kwark, Ji-Hyun
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.21-28
    • /
    • 2006
  • Since hot toxic gas included in the fire is the most principal reason of the death and has the fluid mechanical characteristics unlike air, smoke control method appropriate for the figure and structure of a fire room is needed and each unit of the smoke control system requests high performance according to this characteristics, for which performance test procedures and evaluation criteria must be established. Domestic criteria involved with the smoke control consist of the pre-investigation by documents and the part inspection, which has lots of problems because they are far from the performance based evaluation method compared with the references of developed countries. Consequently, domestic and international references were compared and analyzed, problems being emerged and standardization scheme of the test procedure was presented.

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.

A Study on Securing Safety of Evacuation through Smoke Control in Case of Fire at the Central Corridor Type Intelligent Buildings (중복도형 인텔리전트빌딩 화재시 연기제어를 통한 피난안전성 확보에 관한 연구)

  • Min, Se Hong;Lee, Jae Moon;Bae, Yeon Jun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.117-127
    • /
    • 2015
  • This study investigated the smoke blocking and control systems for the safety of residents evacuation and for the prevention of smoke spread through the central corridor in the event of central corridor type of intelligent building fire. We offered additional ways of utilizing smoke ventilators and intake ventilation equipment and utilized CFD-based fire simulation program(FDS Ver.5.5.3) in order to analyze the effect. As a result, many differences in the smoke block effect, depending on the application of smoke ventilator and location of installation, was found. In addition, the result was found that larger effect was showed not in the case of application of smoke ventilator in central corridor only but application in fire room. The reason is that the smoke leakage is blocked primarily as air is flowed in the fire room through open door by operation of intake smoke ventilator in the public corridor and secondarily, the smoke leakage to the public corridor could be blocked as fire and smoke were released to the opened smoke ventilator continuously. Especially, the effect was maximized through complex interactions by applying smoke ventilator and intake ventilation equipment in corridor together rather than applying smoke ventilator and intake ventilation equipment independently. The proposed measure through this study shall be considered from architectural plan as one of ways for blocking from smoke spread to the central corridor in the central corridor type of intelligent building. In addition, flaws on regulation shall be established and supplemented.

Changes of Smoke Components and Smoke Odor by Far Infra-red Radiation in a Closed Room

  • Hwang, Keon-Joong;Rhee, Moon-Soo;Ra, Do-Young
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.198-204
    • /
    • 1998
  • This study was conducted to evaluate the effect of far IR radiation for the elimination of sidestream smoke components in a closed room. The measurements covered particle sizes of 13.8-542.5 nm, particle concentration, TSP, UVPM, FPM, solanesol, and the following gases and vapor components of smoke: carbon dioxide, carbon monoxide, nicotine, and 3-ethenyl-pyridine. Also, the changes of smoke odor strength by far IR radiation were tested by using the electronic nose system. There was no difference between control and far IR radiation in changes of the concentration of $CO_2$ and CO. The concentrations of TSP, UVPM, FPM, solanesol, nicotine, and 3-ethenylpyridine were reduced by far IR radiation. The growth and diminishing rate of RSP diameter was accelerated by far IR radiation compared with control. There was a little difference of smoke odor change with far IR radiation by electronic nose system analysis. Our results indicated that the use of far IR radiation had a little effect on changes of solid, vapor, and odor of smoke, but it had no effect on gaseous components.

  • PDF

A Study on the Automatic Pressure Differential Sensor Development of Smoke Control Zone (제연구역의 자동 차압센서 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.23-28
    • /
    • 2005
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable pressure differential sensor was developed by establishing the specifications, algorithms and constructing engineering data. The development of pressure differential sensor can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

Flow Analysis of Building Pressurization System for Smoke Control (건물의 가압방연시스템 설계를 위한 유동해석에 관한 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.14-20
    • /
    • 2000
  • Many pressurization systems are designed and built with the goal of providing a smoke-free escape route in the event of a building fire. A secondary objective is to provide a smoke-free staging area for fire fighters. In the present study, a computer program is developed to calculate pressure loss and flow rate at several building elements such as a room, a ]tabby a staircase and an air supply shaft. By the program as the dosing tool for the pressurization system, the capacity of the injection fan is calculated, and the design method is proposed for the optimization of the fan capacity.

  • PDF