• Title/Summary/Keyword: Smectite

Search Result 206, Processing Time 0.022 seconds

Hydrothermal Synthesis of Saponite from Talc (활석을 이용한 사포나이트의 수열합성)

  • 배인국;장영남;채수천;류경원;최상훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2003
  • Saponite was synthesized from talc by hydrothermal method. The starting material was prepared by adding ($NO_3$)$Al_3$$.$$9H_2$O and Mg($NO_3$)$_2$$.$$6H_2$O solution to the talc powder. which was previously activated in air at 800 $^{\circ}C$ together with $Na_2$$CO_3$. The alkalinity of the solution was controlled by $NH_4$OH solution. The autoclaving was carried out in the closed stainless steel vessel (about 1 liter) for 40 hours under the pressure of 25 kgf/$\textrm{cm}^2$ at $ 230^{\circ}C$ The characterization of the reaction product shows that saponite was crystallized successfully. After the experimental results, pressure was not sensitive parameter in the range of 25 ∼ 75 kgf/$\textrm{cm}^2$, but longer reaction time results in better crystallinity.

Investigation of Phosphorus Species in Marine Sediment (해저 퇴적물에 함유된 인의 존재 형태에 대한 연구)

  • 김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2003
  • $^{31}$ /P NMR and XRD have been used to study the mineralogical compositions and the phosphorus species in marine sediments near Wolsung nuclear power plant. The core samples with 30cm depth were investigated and no mineralogical changes have been found. The studied marine sediments were composed of quartz, albite, microcline, calcite, and some clay minerals such as illite, smectite, chlorite, and kaolinite. Only orthophosphate-monoester and very small amount of ortho-phosphate-diester were identified as phosphorus species in the studied sample, different from the species reported in other countries. These phosphorus species are mainly from organisms and was exposed to the oxic conditions. The consistent mineralogical compositions as well as the same phosphorus species throughout the entire core samples indicate that the constant oxic condition was kept without any changes in sedimentary conditions or the sediments were deposited with different sedimentary conditions, but later they were disturbed by other activities and exposed to the surface oxic conditions continuously.

Chemical Weathering of Glacial Debris of the Barton Peninsula of King George Island, South Shetland Islands, Antarctica: Microtextural Evidences (남극 사우스셰틀란드 킹죠지섬 바톤반도 빙하쇄설물의 화학적 풍화작용: 미조직학적 증거)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • Diverse microtextures and secondary minerals formed by chemical weathering were observed in the glacial debris of King George Island. Weathering rind was observed in the block of basaltic andesite tuff due to dissolution of calcite producing voids. Eolian volcanic glass altered to mixtrure of allophane-like materials and iron oxyhydroxides at grain edges with relative concentration of Al. Fe, and Ti. Biotite in granodiorite area was transfarmed to vermiculite and interstratified biotite-vermiculite or very rarely to kaolinite and gibbsite. Pyrite in the hydrothermal alteration zone was repalced by iron oxides, resulting in sulfuric acid which locally accelerated alteration of chlorite to expandable clay minerals. Weathering of plagiociase and K-feldspar was negligible. Although glacial debris of the Barton Peninsula has undergone weak chemical weathering with formation of some secondary minerals, massive formation of smectite, abundant in nearby marine sediments, didn't occur.

Identification of two coliphages from Han-river and its adsorption-elution effect on soil materials (한강에서 분리한 이종 coliphage의 동정과 점토질에 대한 흡착 및 용출효과)

  • 홍순우;하영칠;안태석;이영숙
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.210-222
    • /
    • 1982
  • Coliphages isolated from Han-River from September 1980 to August 1981 were classified by morphological and physiological characteristics. Effects of soil metrial on the fate of coliphage in nature were investigated. 1. The correlation coefficient between coliphage and E.coli which was host of coliphages in nature was 0.7173 (p=0.004). 2. Coliphage I isolated from Han-River of which DNA molecular weight was $27{\times}10^6$ daltons was identified as $T_1$ phage and coliphage II of which DNA molecular weight $72{\times}10^6$ daltons was classified as $T_5$ phage. 3. Soil material SW was composed of 63.65% silt and 21.92% clay. Clay was consisted of illite, kaolinite and chlorite evenly. Soil material J was composed of 68.92% silt and 11.67% clay. Clay consisted of smectite only. 4. Coliphage was absorbed to soil material J more than soil material SW, and $T_1$ coliphage was absorbed to soil material more than $T_5$ coliphage was. 5. The phage adsorption efficiency to soil material was enhanced at lower pH : the phage adsorption efficiency at pH 4 was 27 time higher than at pH 7. 6. Divalent $(Ca^{2+})\;and\;trivalention\;(Al^{3+})$ enhanced the phage adsorption efficiency to soil material from 4 to 39 and from 17 to 91 times higher than monovalent $ion(Na^+)$, respectively. 7. The concentration of organic compound was inversely related to the phage adsorption efficiency to soil. 8. Adsorption of phage onto soil material, and elution efficiency of elutants was in the order of D.D.W>tap water>river water>seawater. 9. The higher the concentration of organic compound was, the more were adsorbed phages to soil eluted. 10. Coliphages survived longer in sterile soil suspension than in nonsterile soil material suspension.

  • PDF

$P^{32}$ Adsorption on Na-zeolite in Different Ionic Strengths (토양개량제(土壤改良劑)인 Zeolite에 의(依)한 인(燐)의 흡착(吸着))

  • Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 1982
  • Natural zeolite rock was pulverized and dispersed in water. Clay fraction was collected by sedimentation method. The dominant clay mineral was Clinoptiolite with some Mordenite and Smectite. $P^{32}$ adsorption on Na-zeolite was determined in different ionic strengths using $P^{32}$ isotope by sludge method. The lower the pH of suspension, the longer the contact time, and the more the amount of zeolite, the more inorganic P was adsorbed by Na-zeolite, whereas the more P adsorption per unit gram of zeolite was observed at a 100mg addition than a 200mg in same volume of P-NaCl solution (20ml), indicating that the whole positively charged surface of Na-zeolite was not occupied by inorganic P. Furthermore, the more P adsorption on Na-zeolite was observed in higher ionic strength than in the lower. The maximum P adsorption on Na-zeolite was about 1me/g, and the zero point charge (ZPC) is assumed to be below pH 3.7.

  • PDF

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Chemical Weathering Deterioration of Oya Tuff and Its Alteration to Zeolitic Materials (오야응회암의 지화학적 풍화 열화 특성과 변질작용)

  • Choo Chang Oh;Jeong Gyo-Cheol;Oh Dae Yul;Kim Jong-Tae;Seiki T.
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.381-390
    • /
    • 2004
  • This study was performed to relate the weathering properties of Oyaish tuff from Japan to mechanical properties of rocks in terms of mineralogical alteration and chemistry. The tuff is composed of clinoptilolite, quartz, feldspars, mordenite, opal C-T, and smectite. Since fresh tuff contains approximately $30\~50\%$ zeolite, it is expected that the rock is subjected to weathering process ascribed to water contents on earth surface, significantly reducing mechanical strength of tuff. It is also anticipated that weathering process and properties may be different even in the same rock mass, due to the differences in local mineralogy, chemistry and microtextures in tuff.

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

The Study on the CEC Increase and Granulation of Natural Zeolite -2. Effects of Temperature and Time on the Recrystallization of Natural Zeolite (천연(天然)Zeolite의 CEC 증가(增加)와 입단화(粒團化)에 관(關)한 연구(硏究) -2. 반응(反應) 온도(溫度)와 반응(反應) 시간(時間)의 영향(影響))

  • Choi, Jyung;Hur, Nam-Ho;Lee, Dung-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.151-154
    • /
    • 1993
  • The magnitute of CEC of the reaction product which was produced by the treatment of the natural zeolite power(CEC : 67me/100g) with 3N-NaOH at $80^{\circ}C$ for 30 hours was determined to be about 260me/100g, which was the highest value in all reaction products. By the NaOH-treatment the contents of major clay minerals in natural zeolite was shown to be decreased and it is apparent that new phillipsite was synthesized. Furthermore it is interesting that the phillipsite contents was increased with longer reaction time and higher temperature. After 30 hours treatment the dorminant clay mineral in the reaction product was found to be phillipsite.

  • PDF