• Title/Summary/Keyword: SmartFarm

Search Result 468, Processing Time 0.024 seconds

A Study on the Monitoring System of Growing Environment Department for Smart Farm (Smart 농업을 위한 근권환경부 모니터링 시스템 연구)

  • Jeong, Jin-Hyoung;Lim, Chang-Mok;Jo, Jae-Hyun;Kim, Ju-hee;Kim, Su-Hwan;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.290-298
    • /
    • 2019
  • The proportion of farm households in the total population is decreasing every year. The aging of rural areas is expected to deepen. The aging of agriculture is continuing due to the aging of the aged population and the decline of the young population, and agricultural manpower shortage is emerging as a threat to agriculture and rural areas. The existing facility cultivation was concentrated on the production / yield per unit area. However, nowadays, not only production but also crop quality should be good so that the quality of crops must be improved because they can secure competitiveness in the market. Therefore, the government plans to increase the productivity by hi-techization of ICT infrastructure horticulture and to plan the dissemination of energy saving smart greenhouse. Therefore, it is necessary to develop a Smart Farm convergence service system based on a hybrid algorithm to enhance diversity and connectivity. Therefore, this study aims to develop smart farm convergence service system which collects data of growth environment of the rhizosphere environment of crops by wireless and monitor smartphone.

Development of Building System for Achieving an Optimal Growth Environment in a Vertical Smart Farm (수직형 스마트 팜의 적정 생육환경 조성을 위한 건축 시스템 개발 - 수직형 스마트 팜에 최적화된 내부 공기 균일성 향상에 대한 연구 -)

  • Kim, Handon;Lee, Jeonga;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.3-10
    • /
    • 2021
  • According to the IPCC, humans are influencing the climate system. Such changes in the climate system can cause problems in the supply of food ingredients in the agricultural field by changing the existing growing environment. To solve this problem, vertical farms can be a good alternative for a stable supply of food ingredients. Although the vertical smart farm pays close attention to maintaining and managing the growing environment of crops, it is difficult to uniformly implement temperature, humidity, illumination, oxygen, and carbon dioxide concentrations in the building space. As a result of conducting computational fluid dynamics analysis to ensure air uniformity, a remarkable result is that it is advantageous to continuously spray suitable carbon dioxide CO2 concentrations for a long period of time for air uniformity in a vertical smart farm. Through this result, it is possible to efficiently plan a growing environment system optimized for a vertical smart farm. Based on this study, if efficient crops are produced by creating an optimized growing environment for vertical smart farms, it will be able to contribute to the development of the agricultural field.

Agricultural Management Innovation through the Adoption of Internet of Things: Case of Smart Farm (사물인터넷에 의한 농업경영혁신 : 스마트농장의 사례)

  • Kim, Joo-Tae;Han, Jong-Soo
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.65-75
    • /
    • 2017
  • Agricultural sector in Korea faces the threat of aging farmers and many other difficulties. Because agriculture is a very less-competitive industry in Korea and many solutions to improve the competitiveness of Korean agriculture should be studied. The advent of Internet of things(IoT) technology makes possible many new industries and business models in the current society. The adoption of this new technology in agriculture can bring about innovations in agricultural production and distribution as $6^{th}$ industry. This paper summarizes the opportunities in IoT and smart farm. The major benefits and obstacles in introducing smart farms are reviewed and the cases of two successful smart farms in Korea are analyzed. Through these case studies, we can recognize the current status and future strategies in Korean smart farms.

Building a Smart Farm in the House using Artificial Intelligence and IoT Technology (인공지능과 IoT 기술을 활용한 댁내 스마트팜 구축)

  • Moon, Ji-Ye;Gwon, Ga-Eun;Kim, Ha-Young;Moon, Jae-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.818-821
    • /
    • 2020
  • The artificial intelligence software market is developing in various fields world widely. In particular, there is a wide variety of applications for image recognition technology using deep learning. This study intends to apply image recognition technology to the 'Home Gardening' market growing rapidly due to COVID-19, and aims to build a small-scale smart farm in the house using artificial intelligence and IoT technology for convenient crop cultivation for busy people living in cities. This intelligent farm system includes an automatic image recognition function and recommendation function based on temperature and humidity sensor-based indoor environment analysis.

The fourth industrial revolution and the future of food industry (4차산업혁명과 식품산업의 미래)

  • Yoon, Suk Hoo
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.60-73
    • /
    • 2017
  • Recently, the whole world is facing an unprecedented moment of opportunity, so-called The Fourth Industrial Revolution. As emphasized in the World Economic Forum held in January of 2016 at Davos, the Fourth Industrial Revolution is not merely a changes of technological devices. The fundamental of the revolution is new, innovative, and visionary business models which change the whole systems dramatically. One of the greatest challenges is to feed an expected population of 9 billion by 2050 in a impactful way. The system should be sustainable as well as beneficial in improving the lives of people in the food chain along with the ecological health of environment. The technological advances of the Fourth Industrial Revolution are expected to improve our food system. The smart farm technology such as precision planting and irrigation techniques will improve the yields of food materials. The smart food transportation and logistics systems will substantially improve the safety and human nutrition. The adaptation the Fourth Industrial Revolution technology will induce the smart supply chains, smart production, and smart products in food industry due to its flexibility and standardization. This will lead the manufactures to adapt to customers' changing product specifications and traceable services in a timely manner.

A Case Study on the ICT-Based Smart Aquaculture System by Applying u-Farms (u-양식장을 적용한 ICT 기반 스마트 양식장 시스템 사례 연구)

  • Hwang, Sung-Il;Kim, Oe-Yeong;Lee, Seok-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The Economist was implied most of the major fisheries are procured by aquaculture in 2030 affected by the Aquaculture Revolution. William Hallal was also predicted that amount of aquatic products will be about 50% of the total fishery in 2015. Various organizations had been conducted various u-farm researches and demonstration projects due to changing environment. This study aims to propose an ICT-based technologies and policies for the ICT-based smart system by identifying results and problems.

Control Effect of a Natural Enemy Application Model on Smart Farm Strawberry using Ecological Engineering Technique (스마트팜형 시설 딸기에서 생태공학적 천적 적용을 통한 해충방제효과)

  • Mihye Kim;Mijeong Kim;Jangwoo Park;Hyejeong Jun;Eunhye Ham
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.345-346
    • /
    • 2023
  • Natural Enemy in First (NEF) method is an ecological engineering application technology for natural enemies and was applied to strawberry in a smart farm-type greenhouse to evaluate its effect on the density of thrips and aphids. The control group was treated with pesticide and compared with the NEF treatment group, in which Orius minutus and Portulaca sp. were used as a natural enemy and habitats for thrips and aphids. The density of pests in the NEF group was effectively managed and similar to that in the control group.

Design and Development of Web-Based Decision Support Systems for Wheat Management Practices Using Process-Based Crop Model (과정기반 작물모형을 이용한 웹 기반 밀 재배관리 의사결정 지원시스템 설계 및 구축)

  • Kim, Solhee;Seok, Seungwon;Cheng, Liguang;Jang, Taeil;Kim, Taegon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.17-26
    • /
    • 2024
  • This study aimed to design and build a web-based decision support system for wheat cultivation management. The system is designed to collect and measure the weather environment at the growth stage on a daily basis and predict the soil moisture content. Based on this, APSIM, one of the process-based crop models, was used to predict the potential yield of wheat cultivation in real time by making decisions at each stage. The decision-making system for wheat crop management was designed to provide information through a web-based dashboard in consideration of user convenience and to comprehensively evaluate wheat yield potential according to past, present, and future weather conditions. Based on the APSIM model, the system estimates the current yield using past and present weather data and predicts future weather using the past 40 years of weather data to estimate the potential yield at harvest. This system is expected to be developed into a decision support system for farmers to prescribe irrigation and fertilizer in order to increase domestic wheat production and quality by enhancing the yield estimation model by adding influence factors that can contribute to improving wheat yield.

A Farm management System Using Drone (무인비행체를 이용한 방목형 목장관리 시스템)

  • Jung, Nyum;Kim, Sang-Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.889-894
    • /
    • 2017
  • The purpose of this paper is to implement smart farm using automatic navigation, short - range wireless communication network technology, and automatic take - off and landing system using unmanned aerial vehicle to maximize the efficiency of grazing farm management. The grazing pasture management system that integrates ICT fusion technology for the activation of the mountain ecological livestock production is expected to contribute to the improvement of the productivity of the grazing livestock, the infrastructure to produce the excellent quality, and the competitiveness of the livestock industry in response to the FTA. And it will contribute to the improvement of career force through the supply to the farmhouse.

A Study on the Architecture Design of Smart Farm System based on IoT Technology (IoT 기반의 스마트 팜 시스템 구조설계에 관한 연구)

  • Ghil, Min-Sik;Kwak, Dong-Kurl;Choi, Shin-Hyeong;Shin, Jong-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.543-545
    • /
    • 2019
  • Recently, the demand for smart farms is increasing due to the increase in the cultivation area such as horticulture, fruit trees and special crops. However, due to the irregular weather changes and the cultivation method of the crops due to the different cultivation environment, there are frequent occurrence of diseases and insect pests and infectious diseases due to system error or carelessness, and the cycle is also very short. In addition, the Smart Farm business has been built by combining various sensors (temperature, humidity, CO2, illumination) and LED lighting, but it is costly in terms of frequent errors, lack of power supply, And thus the management can not be efficiently managed. Therefore, this paper combines real time sensing technology based on IoT Platform and high performance control technology to control pests and equipment errors and monitor the growth status of crops in real time based on big data analysis and Artificial Intelligence System.

  • PDF