• Title/Summary/Keyword: Smart-device

Search Result 2,281, Processing Time 0.038 seconds

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer (소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구)

  • Lee, Hoon-Hee;Jung, Chang-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, a Small-sized and planer resonator design of Magnetic Resonance - Wireless Power Transfer(MR-WPT) were proposed for practical applications of mobile devices, such as a laptop, a smart-phone and a tablet pc. The proposed MR-WPT system were based on four coil MR-WPT and designed as a transmitter part (Tx) and a receiver part (Rx) both are the same shape with the same loop and resonator. There are four different spiral coil type of resonators with variable of line length, width, gap and turns in $50mm{\times}50mm$ size. The both of top and bottom side of substrate(acrylic; ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$) ere used to generate high inductance and capacitance in limited small volume. Loops were designed on the same plane of resonator to reduce their volume, and there are three different size. The proposed MR-WPT system were fabricated with two acrylic substrate plane of Tx and Rx each, the Rx and Tx loops and resonators were fabricated of copper sheets. There are 12 combinations of 3 loops and 4 resonators, each combination were measured to calculate transfer efficiency and resonance frequency in transfer distance from 1cm to 5cm. The measured results, the highest transfer efficiency was about 70%, and average transfer efficiency was 40%, on the resonance frequency was about 6.78 MHz, which is standard band by A4WP. We proposed small-sized and planer resonator of MR-WPT and showed possibility of mobile applications for small devices.

Implementation of Radiotherapy Educational Contents Using Virtual Reality (가상현실 기술을 활용한 방사선치료 교육 콘텐츠 제작 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.409-415
    • /
    • 2018
  • The development of smart devices has brought about significant changes in daily life and one of the most significant changes is the virtual reality zone. Virtual reality is a technology that creates the illusion that a 3D high-resolution image has already been created using a display device just like it does in itself. Unrealized subjects are forced to rely on audiovisual materials, resulting in a decline in the concentration of practices and the quality of classes. It used virtual reality to develop effective teaching materials for radiology students. In order to produce a video clip bridge using virtual reality, a radiology clinic was selected to conduct two exposures from July to September 2017. The video was produced taking into account the radiology and work flow chart and filming was carried out in two separate locations : in the computerized tomography unit and in the LINAC room. Prior to filming the scenario and the filming route were checked in advance to facilitate editing of the video. Modeling and mapping was performed in a PC environment using the Window XP operating system. Using two leading virtual reality camera Gopro Hero, CC pixels were produced using a 4K UHD, Adobe, followed by an 8 megapixel resolution of $3,840{\times}2,160/4,096{\times}2,160$. Total regeneration time was performed in about 5 minutes during the production of using virtual reality to prevent vomiting and dizziness. Currently developed virtual reality radiation and educational contents are being used to secure the market and extend the promotion process to be used by various institutions. The researchers will investigate the satisfaction level of radiation and educational contents using virtual reality and carry out supplementary tasks depending on the results.

Development and Effects of Instruction Model for Using Digital Textbook in Elementary Science Classes (초등 과학 수업에서 디지털 교과서 활용 수업모형 개발 및 효과)

  • Song, Jin-Yeo;Son, Jun-Ho;Jeong, Ji-Hyun;Kim, Jong-Hee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.3
    • /
    • pp.262-277
    • /
    • 2017
  • Digital textbooks enable learning that is appropriate to the characteristics and level of learners through various interactions. The purpose of this study was to develop an instruction model that can more effectively use digital textbooks in elementary science classes and to verify its effectiveness. The results were as follows. The instruction model for helping learners complete their learning by using digital textbooks needs to receive diagnostic assessment and feedback on entry behavior, to build a self-directed learning environment, and to interact with teachers, students, and digital textbooks as scaffolding. In this study, we developed an instruction model using digital textbooks reflecting these characteristic. The instructional model consists of preparation, practice and solidity step. In the preparation step, the learner performs a diagnostic evaluation using digital textbooks. Based on the results, feedback provided at each level can complement the entry behavior and maintain interest in learning activities. In the practice step, self-directed learning is implemented using diverse functions of digital textbooks and various types of data. In the solidity step, learners can internalize the learning contents by reviewing video clips which are provided by teachers, performing problem-solving activities, and accessing outcomes accumulated by learners in the community online. In order to verify the effectiveness of this model, we selected the "Weather and our Life" unit. This experiment was conducted using 101 students in the 5th grade in B Elementary School in Gwangju Metropolitan City. In the experimental group, 50 students learned using a smart device that embodies digital textbooks applied with the instruction model. In the comparative group, 51 students were taught using the paper textbooks. The results were as follows. First, there was a significant effect on the improvement of the learning achievement in the experimental group with low academic ability compared with the comparative group with low academic ability. Second, there was a significant effect on self-directed learning attitude in the experimental group. Third, in the experimental group, the number of interactions with the learner, teacher, and digital textbook was higher than the comparative group. In conclusion, the digital textbooks based on the instruction model in elementary science classes developed in this study helped to improve learners' learning achievement and self-directed learning attitudes.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Designing and Fabricating of the High-visibility Smart Safety Clothing (고시인성 스마트 안전의류의 설계 및 제작)

  • Park, Soon-Ja;Kim, Sun-Woong
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.105-116
    • /
    • 2020
  • The purpose of this study is to progress the limitations and disadvantages of existing safety clothing by applying high technology to current safety clothing that is produced and distributed only with fluorescent fabrics and retroreflective materials. Therefore, the industrial suspender-type safety belt and engineering technology are introduced, designed, and fabricated to help save a life in an emergency. First, the suspender-type safety belt to be developed is designed to emit light by LED attached to the film, and the body of the belt-wearer is recognized from a distance through retroreflection from the flashing LED. It aims to support people's safety by preventing accidents during roadside work, rescue activities, and sports activities at night. Second, with the development of advanced devices when the user is in an unconscious state due to distress or falls into an unconscious state due to distress or accident, the tilt sensor of the control unit attached to the belt automatically detects the angle of the human body and generates light and sound. It is intended to further enhance the utilization by mounting a sensing and signaling device that generates a distress signal and shaping it in the form of a belt attached to a vest that can be easily detached from the outside of the garment. When the wearer falls due to an accident, the tilt sensor of this belt detects the angle change and then the controller generates a high-frequency sound and repeated LED blinking signals at the same time. In the case of conventional safety vests, it is almost impossible to detect that the person is wearing a vest when there is no ambient light, but in case of the safety belts in this study, the sound and light signals of the safety belt enable us to find the wearer within 100 meters even when there is no ambient light.

Development of Electret to Improve Output and Stability of Triboelectric Nanogenerator (마찰대전 나노발전기의 출력 및 안정성 향상을 위한 일렉트렛 개발)

  • Kam, Dongik;Jang, Sunmin;Yun, Yeongcheol;Bae, Hongeun;Lee, Youngjin;Ra, Yoonsang;Cho, Sumin;Seo, Kyoung Duck;Cha, Kyoung Je;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.93-99
    • /
    • 2022
  • With the rapid development of ultra-small and wearable device technology, continuous electricity supply without spatiotemporal limitations for driving electronic devices is required. Accordingly, Triboelectric nanogenerator (TENG), which utilizes static electricity generated by the contact and separation of two different materials, is being used as a means of effectively harvesting various types of energy dispersed without complex processes and designs due to its simple principle. However, to apply the TENG to real life, it is necessary to increase the electrical output. In addition, stable generation of electrical output, as well as increase in electrical output, is a task to be solved for the commercialization of TENG. In this study, we proposed a method to not only improve the output of TENG but also to stably represent the improved output. This was solved by using the contact layer, which is one of the components of TENG, as an electret for improved output and stability. The utilized electret was manufactured by sequentially performing corona charging-thermal annealing-corona charging on the Fluorinated ethylene propylene (FEP) film. Electric charges artificially injected due to corona charging enter a deep trap through the thermal annealing, so an electret that minimizes charge escape was fabricated and used in TENG. The output performance of the manufactured electret was verified by measuring the voltage output of the TENG in vertical contact separation mode, and the electret treated to the corona charging showed an output voltage 12 times higher than that of the pristine FEP film. The time and humidity stability of the electret was confirmed by measuring the output voltage of the TENG after exposing the electret to a general external environment and extreme humidity environment. In addition, it was shown that it can be applied to real-life by operating the LED by applying an electret to the clap-TENG with the motif of clap.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.