• 제목/요약/키워드: Smart vibration control

검색결과 378건 처리시간 0.021초

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

Optimal Design of a Smart Actuator by using of GA for the Control of a Flexible Structure Experiencing White Noise Disturbance

  • Han, Jungyoup;Heo, Hoon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.125-129
    • /
    • 1996
  • This paper deals with the problem of placement/sizing of distributed piezo actuators to achieve the control objective of vibration suppression. Using the mean square response as a performance index in optimization, we obtain optimal placement and sizing of the actuator. The use of genetic algorithms as a technique for solving optimization problems of placement and sizing is explored. Genetic algorithms are also used for the control strategy. The analysis of the system and response moment equations are carried out by using the Fokker-Planck equation. This paper presents the design and analysis of an active controller and optimal placement/sizing of distributed piezo actuators based on genetic algorithms for a flexible structure under random disturbance, shows numerical example and the result.

  • PDF

Vibration Suppression of Moving Suspended Systems by Wave Absorption Control

  • Saigo, Muneharu;Nam, Dong-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.30-37
    • /
    • 2003
  • This paper describes vibration control of a suspended system using wave absorption method. A moving multiple-pendulum system and a moving wire-and-load system are treated. The wire-and-load system is extended to a model crane system that has a motor system to roll up and down the suspended mass like a real crane. The same program with different parameter values controls these three systems. Both numerical simulation and experiment have been conducted, and the present control method has shown to be quite effective.

  • PDF

압전체가 부착된 보의 다목적 상태궤한제어 (Multiobjective State-Feedback Control of Beams with Piezoelectric Device)

  • 박철휴;홍성일;박현철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Active mass damper system using time delay control algorithm for building structure with unknown dynamics

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Yeong-Jong
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.305-318
    • /
    • 2014
  • This paper numerically investigates the feasibility of an active mass damper (AMD) system using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the vibration of civil engineering structures such as buildings and bridges. However, it has not been used for structural response reduction yet. In this study, therefore, the active control method combining an AMD system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active structural control system can effectively reduce the acceleration response of the building structure.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정 (Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms)

  • 허석;곽문규
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Analytical Development of a Robust Controller for Smart Structural Systems

  • Park Chul Hue;Hong Seong Il;Park Hyun Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1138-1147
    • /
    • 2005
  • This paper aims at demonstrating the feasibility of active control of beams with a multiobjective state-feedback control technique. The multiobjective state-feedback controller is de­signed on a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of Hoo performance and H2 performance satisfying constraints on the closed-loop pole locations in the face of model uncertainties. The controller is also designed to reject the effects of the noise and external of disturbances. For the theoretical analysis, the governing equation of motion is derived by Hamilton's principle to describe the dynamics of a smart structural system. Numerical examples are presented to demonstrate the effectiveness of the integrated robust controller in damping out the multiple vibration modes of the piezo/beam system.

A controllability-based formulation for the topology optimization of smart structures

  • Goncalves, Juliano F.;Fonseca, Jun S.O.;Silveira, Otavio A.A.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.773-793
    • /
    • 2016
  • This work presents a methodology to distribute piezoelectric material for structural vibration active control. The objective is to design controlled structures with actuators which maximizes the system controllability. A topology optimization was formulated in order to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material. The objective is the maximization of the smallest eigenvalue of the system controllability Gramian. Analytical sensitivities for the finite element model are derived for the objective functions and constraints. Results and comparisons with previous works are presented for the vibration control of a two-dimensional short beam.