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ABSTRACT : This paper describes vibration control of a suspended system using wave absorption method. A moving
multiple-pendulum system and a moving wire-and-load system are treated. The wire-and-load system is extended to a model crane
system that has a motor system to roll up and down the suspended mass like a real crane. The same program with different parameter
values controls these three systems. Both numerical simulation and experiment have been conducted, and the present control method has

shown to be quite effective.

1. Introduction

Recently, traveling-wave control has been studied as an
alternative to mode-based vibration control by several
has several advantages over
it has no
observation spillovers that may occur in the vibration

researchers. Wave control

mode-based vibration control; control  and
control when there are some imperfections in system
modeling or inaccuracy in sensor locations; it has better
control  performance than vibration

frequencies; and it is basically a local control method to

control at low
which we have paid attention in our studies. The last
feature means that we can suppress the vibration of a
system using no more than the information about the
dynamic states of the element nearest the actuator. This is
quite advantageous to the system whose parameters are
changeable during control operations.

The studies of traveling-wave control include
Vaughan(1968), Von Flotow (1986a, 1986b), Millar and Von
Flotow(1989), Mace(1984), Fujii and Ohtsuka(1992), Tanaka
(1992) and Utsumi(1999).

These studies of traveling-wave control of elastic beams or
strings have used the theoretical solution expressed in the
form of traveling wave and derived the non-reflecting
condition of waves at the control point. On the other hand,
O'connor and Lang(1998) treated a mass-and-spring system
and presented a method of the wave-absorption in a discrete
vibration system. In these studies, few attempts have been
made to apply the wave control strategy to practical vibrating
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systems to show the above-mentioned advantages of
traveling-wave control.

In the previous paper(Saigo et al., 1998), we presented a
new practical wave control strategy that is easy to build in
a control computer with on-line calculation of the imaginary
wave-propagating system. We applied the presented method
to the vibration suppression of a multiple-pendulum system
and showed the effectiveness of the method experimentally.
There, by controlling the

movement was addressed and no support movement for

vibration control support
traveling toward a given target position was considered.

In the present paper, the wave control method presented
the

combination of traveling control and vibration control. In

in the previous paper is expanded to consider
this case, the control system has to achieve a system
displacement to a desireds target position while suppressing
the vibration. Both a multiple-pendulum system and a
wire-and-load suspended system are treated. Furthermore,
the method is applied to a model crane system and shown
to be useful for the vibration suppressing of a practical

crane.
2. Equation of Motion

2.1 Multiple—pendulum system

Fig. 1 shows a traveling multiple rigid-pendulum system
and a traveling wire-and-load system. The equations of
motion of a traveling multiple-pendulum system of n
degrees of freedom(DOF) are obtained using the Lagrange’s
equation of motion. The kinetic energy 7T, and the

potential energy U, of the k-th pendulum are expressed as
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Fig. 1T Moving multiple-pendulum and wire-load system
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where 0 is the angle of the k-th pendulum numbered
from the free end and assumed to be so small that the
terms having powers higher than second of 0, are

negligible, % is the distance between the center of gravity
of the k-th pendulum and the axis of the k-th connecting

pin, I, is the moment of inertia of the k-th pendulum
about the axis of the k-th connecting pin, #2; is the mass
of k -th pendulum, /, is the distance between the axes of
the k-th and (k-1)-th connecting pins, and Y, is the position
of the support of the pendulum system.

The Lagrangian == ,ﬁl(Tk_ Uy gives the equations of
motion of k-th pendulum as
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From the equations obtained by replacing k by k+1 and by
k-1 in Eq.(2), as well as Eq.(2) itself, the following equation
is obtained.
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From the above equation, we see the term of the support
movement appears explicitly only in the equation of the
uppermost pendulum.

2.2 Wire—and—-load system

The wire-and-load system shown in Figl has a small
rigid pendulum between the support and the wire, and
there is a load at the bottom of the wire. The wire length
is fixed. Assuming the equation of the wire is expressed by
that of a dangling string and applying the finite difference
method to the equation of motion, we obtain a system of
equations similar to that of a multiple simple-pendulum
system.

We assume the equation of motion of the wire is
expressed by that of a dangling string. By balancing the
horizontal component of forces on an infinitely small

element 2z~ (z+ dz), the following equation is obtained as

M g 07 _ 1 3% _

where 7 is the lateral deflection of wire, z is the coordinate

measured from the lowest end, p is the mass of string per
unit length and M is the mass of load. Appling the finite
difference method to the above equation using the following

approximations,
% _ miw —2nitmi .y 9p  wmiT iy .
0z% Azt © 0z Az 7 Z=18z
we obtain
M .
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where 7; is the lateral deflecion of i-th mesh point

numbered from the lowest end of the wire and Az is the

finite difference mesh.

From Eq.(5) and the equation obtained by replacing i by i+1

in Eq.(5), we obtain the following equation of motion by

substituting  0;= (7,—7,1,)/ 4z,

Lz 0; :lewz(ﬁ 120, +6,_1)
+(i—1)6,—2i6,+(i+1)8 (©)
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The above equation is the same as the equation of motion
of a multiple simple-pendulum system obtained from Eq.(3)
if we regard 4z as the length of the simple pendulum and
M as the additional mass to the lowest pendulum. This
means that we can simulate the dynamics of wire in the
form of a system of simple pendulums of length 4z.

The influence of a wire on the total dynamics of the
pendulum system is quite small as can be seen in the
experimental results. The exact dynamical formulation for a
wire is not so important in our study (M is much greater
than pA4z). So, we will not try to develop a more accurate
mathematical model of the wire in this paper.

In the following numerical simulation, we will treat the
wire-and-load system as
pendulum consisting of the uppermost
pendulum and a large-DOF series of simple pendulums,
among them the lowest having a mass equal to that of the
load.

a non-homogenous multiple
system

rigid

3. Control Strategy

The concept of our vibration control is to connect the
system whose vibration should be suppressed to a virtually
infinite system that can absorb vibration energy endlessly. In
the previous paper, we have presented a control strategy in
which the real pendulum system is suspended by the
imaginary energy-absorption multiple pendulum system
whose dynamics is simulated by on-line computation. Since
we have to use a finite DOF energy absorption system in
practice, we introduced initialization methods for the energy
absorption the time of initialization, the
deflections and velocities of all the imaginary pendulums
other than the lowest are set to zero, and the deflection and

system. At
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Fig. 2 Imaginary system for moving pendulum system
(a) Imaginary system for vibration control;
{b) Imaginary system for vibration and position control

velocity of the lowest are set to fit the present position and
velocity of the support of the real system.

In this paper, we treat vibration control of a suspended
system that accepts a traveling command. The traveling
command is given in term of the acceleration of the

suspended system ¥, as a function of time. Two types of
imaginary multiple-pendulum system are possible as shown
in Fig. 2. One is the non-traveling imaginary system (NTIS,
Fig. 2(a)) and the other the traveling imaginary system (TIS,
Fig. 2(b)). The NTIS does not accept the traveling command

Y. and thus its algorithm is the same as that of the
vibration control of the non-traveling system treated in the
previous paper. The vibration control calculated using NTIS
is added with the traveling command to produce position
control of the support of the real system. The influence of
the traveling is actually regarded as a disturbance appearing
on the uppermost pendulum of the real system. With TIS,
on the other hand, the support of the imaginary system is

moved according to the traveling command ¥, and the
movement is propagated through the imaginary system
down to the real system. For both cases in Fig. 2, the value

of %= ;lkm is the distance between the horizontal
positions of the support and of the lowest end of the
imaginary system. The initialization is performed based on
this value.

Through numerical simulations we have found the control
performance using NTIS is better than that using TIS. It is
considered that the initialization using TIS brings about a
larger initial deflection and velocity to the lowest imaginary
pendulum because the acceleration of the imaginary system

due to Y. produces a larger value of X;. This causes the
vibration energy flow back into the controlled real system.
Therefore, we use NTIS in the following work.

Three types of initializing timing are investigated for NTIS
as shown in Fig. 3. The cases (a) and (b) in Fig3 are the
same as those used in the previous paper, while (c} in Fig3
is a new method presented in this paper. In the case (a),
the PI  method, when

initialization is  made

x0=0(=;11k€0k)’ and in the case (b), the VI method,

initialization is made when #%;=0. In the case (c), the VI

method, initialization is made when X;=0 as in the case
(b) but also has a position shift of the support of imaginary
system. The vibration control performance in this case is
better than in the cases (a) and (b), except that it may
cause an error in the final support position of the real
system.
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Fig. 3 Three types of initializing method
(a) PI method : initialization when x,=0
(by VI method : initialization when X,=0
{c) VI' method : when %;=0 and support shift

It may be advantageous first to move the system near
the destination with less vibration and then to control the
final position accurately. It is an easy job for the control
computer, given the present and target positions, to cancel
the error of the final position.

When the real pendulum system is connected to the
imaginary system, the acceleration of the lowest end of the
imaginary system(Saigo et al., 1998) is represented as

(Pl 0+ g+ W DO— g1+ uy+ e
*o= 1= h/I+ 1 7)

where @ is the angle of the uppermost rigid pendulum, ¢
is the angle of the lowest imaginary system pendulum, #g
is the ratio of the mass of the total real system to that of

the uppermost rigid pendulum, g is the ratio of the mass
of an imaginary system pendulum to that of the uppermost

2 are the length, the
distance between the supporting point and center of gravity,
and the square of radius of gyration on the supporting

rigid pendulum, and 1, h and

point, of the uppermost rigid pendulum, respectively. As
stated for the non-traveling case investigated in the previous
paper,
of the support of the real pendulum system for vibration
simple-pendulum

%, is used here also as the control of the movement

suppression. A homogenous multiple
system is used as the imaginary system in Eq.(7) for
simplicity same as in the previous paper. A measured value
‘P and the
computed value of ¢ from the imaginary system give the
Note that Eq.(7) includes no
dimensional parameters of the suspended pendulums except

of G, the numerically approximated value of

vibration control %
those of the uppermost one. So, it can give vibration control
for the multiple rigid-pendulum system as well as for the
wire-and-load system with an uppermost rigid pendulum. In
other words, the control does not depend on the length of
the wire.

introduced in Eq.(7) for the
adjustment of the performance of the control system. For a

The parameter pu is

large value of 4, the wave propagation in the imaginary
system becomes slower and the control gain for the
vibration suppression smaller. A smaller gain makes the
control of the system more stable but less effective. In the
experiment, values for pu
considering the system stability and the limitations of the
actual DC servo motor system. Thus, the wave propagating

we obtained the practical

characteristics in the imaginary system and the control
performance of the vibration suppression can be designed
by changing the values of y. The parameter x, the ratio of
the length of the imaginary system pendulum to that of the
uppermost rigid pendulum, can also change the wave
propagating characteristics in the imaginary system.

Ball Screw Nut Servomotor
A Encoder
£ Encoder
- “Wire /Driver
Load i
oa\ I° =] @ E '
im D
M ] O L —

PC Controller

Fig. 4 Experimental apparatus for wire-load system
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4, Experiment

4.1 Experimental apparatus

Fig. 4 shows a schematic diagram of the experimental
apparatus. For  multiple-pendulum
demonstrated in the previous paper(Saigo et al, 1998), to
which details are referred. The uppermost pendulum is
connected to and supported by the nut of the ball-screw.
The ball-screw is driven by a 350W DC servomotor to
generate the horizontal movement of the support of
pendulum. The DC servomotor is a velocity feedback type
with an integrated tacho-generator. A rotary encoder is

system, it was

attached to the uppermost pendulum.

The muttiple-pendulum system is made of three same-size
aluminum plates connected serially by pins allowing free
rotation. The width and thickness of each plate are 40 mm
and 10 mm, respectively. The distance between the center
axes of the connecting pins of each plate is 300 mm. The
adjacent plates can be fixed rigidly with braces to form a
pendulum system having less than three degrees of freedom.
is made up of a rigid
pendulum, a wire and a load. The length, width and
thickness of the rigid pendulum are 60 mm, 40 mm and 15

The wire-and-load system

mm, respectively. The diameter of the wire is 1 mm. The
length of the wire and the weight of the load can be
changed.

The computation of the control is conducted by a DSP
(TMS320C30) for the rigid-pendulum system and a personal
computer with 200 MHz CPU for the wire-load system. The
sampling period of A/D conversion is 0.1 ms for the
rigid-pendulum system and 2 ms for the wire-and-load
system. A 10-DOF system of simple pendulums has been
used as the imaginary system.

The following system movement pattern is used as the

traveling command in the experiments; the acceleration V.
is 4.26 m/s® for the time period between 0 sec and 0.0352
sec, and -0.01883 m/s? between 0.0352 sec and 8 sec. Using

this acceleration pattern, the pendulum system should travel
the distance of 0.60 m in 8 seconds.
4,2 Experimental results of
system

Fig. 5 shows the effects of the different initializing
methods, the PI and VI’ methods, for the 3-DOF traveling
rigid-pendulum system with x=3. In Fig. 5 the curve
rising to the right-hand side is the position of the support

the multipie—pendulum

and the vibration waveform is the angle of the uppermost
pendulum. We can confirm that our method is effective for
a traveling pendulum system as well as for a non-traveling
system. Fig. 6 shows the control performance of the PI

method and the VI’ method on the 1-DOF pendulum
Both
initializing methods have excellent vibration suppressing

system (three pendulums are connected rigidly).

effects.  Similarly,  control  performance on  the

nonhomogeneous 2-DOF pendulum system (the lowest and

the middle pendulums are connected rigidly) is well
confirmed, which is not presented here.
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4.3 Experimental results of the wire—and—load system
Fig. 7 shows the effects of the different initializing methods,
the PI and VI' methods, for the traveling wire-and-load
system with the wire length 1=0.5 m, the load weight w=12.3
N and pg=3. In Fig. 7, the curve rising to the right-hand
side is the position of the support and the vibration
waveform is the angle of the uppermost pendulum. We can
see that the VI' method has quite an excellent damping
performance (Fig. 7(c)). The PI method
positioning the pendulum system at the traveling destination,

is accurate in

but the vibration control performance is not so good. The
performance of the VI method is not so good, which is not
shown here. The vibration waveform shown in Fig. 7(c)
resembles well that of the 1-DOF rigid pendulum shown in
Fig. 6(b). This means the dynamic characteristics of the
experimental wire-and-load system is similar to that of the
1-DOF rigid-pendulum system and the vibration of the wire is
practically negligible.

In order to understand the characteristics of the initializing
methods obtained in the experiments, several numerical
simulations have been conducted. Fig, 8 shows the simulation
result for the wire-load system corresponding to Fig. 7(b) and
7(c). In the simulation, dry friction is assumed at each
connecting pin of the pendulum to represent the wire. The
ratio of the mass of the wire to that of the uppermost
pendulum is assumed to be 0.0001.
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Fig. 7 Experimental results of wire-load system
(/I=0.5m, w=12.3N, p=3, x=10);
(@) No control, (b) Control with PI method,
(c) Control with VI' method

Small wire vibrations occur at the starting period in the
simulation results, which are not observed in the experiments.
In Fig. 8 we show the waveform of the swing angle of the load
in stead of that of the uppermost pendulum because the latter
is affected by the small wire vibration. There is little difference
between the results in Fig. 7 and Fig. 8. From these figures, we
can confirm that the experiments have been performed
successfully and that the angle of the uppermost rigid
pendulum is virtually equal to the swing angle of the load.

As is easily understood, the vibration of the load would
propagate up to the uppermost rigid pendulum. So, our
wave-absorption system, which attends the uppermost rigid
pendulum, is eventually effective in suppressing the vibration of
the load. The VI' method shows best vibration suppression
among the three initializing methods. The PI and VI methods
have inferior vibration control performances, especially for a
small value of p. Therefore, it is suitable to use a relatively
large value of y depressing the vibration control performance
for the PI or VI methods.
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Fig. 8 Numerical results of wire-load system
(I=0.5m, w=12.3N, p=3,x=10);
(a) Control with Pl method, (b) Control with VI' method
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4_4 Experimental results of model crane system

The wire-and-load system is extended to a model crane
system that has a motor system to roll up and down the
suspended mass like a real crane. Fig. 9 shows the
experimental model of a crane, which has a load suspended
by a wire and a pulley. One end of the wire is fixed to the
motor shaft for winding and the other end is fixed to a
small rigid pendulum that is attached to the nut of the
ball-screw with free rotation. The distance between the axis
of the rigid pendulum and the wire return on the returning
pulley is equal to the diameter of the pulley. Then, the
angle of the rigid pendulum is practically equal to the
swing angle of the load independent of its height when the
small vibrations of the wire can be ignored. This means the
stationary direction of the pendulum is always vertical and
the vibration suppression strategy for the wire-and-load
system is applied directly by monitoring one half of the
load suspension system. Our experiment has shown that it
is possible to neglect the small wire vibration in the
wire-and-load system as well as in most practical crane
systems. The velocity pattern used of winding-up and
rewinding-down is 0.1 m/s and -0.1 m/s, respectively. The
load moves between the vertical positions of 0.9 m and 0.3
m during the time period between 0 sec and 6 sec.
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Fig. 10 Experimental results of crane system for
load-raising (total weight = 17.6N);
(@) No contro],
(b) Control with PI method (x=10,x=10),
(c) with VI' method (z=1,x=10)

Fig. 10 shows the experimental results for the case of
winding up the load; (a) is the case where no vibration
control is used, (b) is the case with wave control in the PI
method, and (c) is the case with wave control in the VI’
method. Fig. 11 shows the cases of rewinding down the
load with controls similar to those in Fig. 10. The system
movement pattern is the same as in the case for the
wire-and-load system. In Fig. 10, we can see the amplitude
of the vibration in winding-up without control becomes
larger as the wire length becomes shorter, due to the
instability in winding-up of a suspended load. The contrast
in these figures demonstrates the effectiveness of the
stabilization using the wave-absorption control. In addition,
the wave control method presented has shown an excellent
control performance regardless of the wire length. Fig. 10(b)
and Fig. 11(b) with the PI method for a large value of u
show relatively good results in the final state of the load,
that is, accurate final position and small vibration. Thus, we
can use the PI method to position the system accurately at
the target position if its vibration suppression performance
is acceptable. Even if the VI’ method is used, the final
position errors are not very significant. Fig. 10 and Fig. 11
have shown our wave absorption method is useful for the
actual crane system.
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Fig. 11 Experimental results of crane system for
load lowering (total weight = 17.6N);

(a) No control,

(b) Control with PI method (x=10,x=10),

(¢) Control with VI' method (u=1,x=10)
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5. Conclusions

This paper proposes a wave control method using a
non-traveling imaginary multiple-pendulum system applied
to vibration control of the traveling suspended system. We
have shown that the method presented, using little
information about the suspended system states, is quite
effective for a traveling suspended system whose dynamics
are changeable during operation. The initializing methods
with and without shifting the support of the imaginary
system have their respective merits for the application. The
former realizes accurate final positioning while the latter
realizes excellent vibration suppression. Combination of
methods can produce excellent overall performances. This
control method can readily be applied to real crane systems
that have a moving pulley and parallel wiring.
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