• Title/Summary/Keyword: Smart monitoring

Search Result 1,869, Processing Time 0.032 seconds

A Study on a New Approach to Robust Control and Torque Control Response Analysis of Manufacturing robot Based on Monitoring Simulator for Smart Factory

  • Kim, Hee-Jin;Kim, Dong-Ho;Jang, Gi-Won;Gu, Byeong-Hwa;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.397-409
    • /
    • 2021
  • This study proposes a new approach to implimentation of robust control and torque control response analysis based on monitoring simulator for smart factory. According to the physical properties of a flexible manipulator, a two time-scale approach, namely, singular perturbation ap proach, is further utilized for thorough analysis and general controller design. It is shown that asymptotic motional tracking can be effectively achieved, whereas the force regulation errors can be made arbitrarily small. For demonstration of the proposed technology performance, experiments of a eight joint flexible manipulator are performed for the proposed control method, and the reliability of proposed control results are illustrated based on monitoring simulator.

The Effects of Maternal Monitoring, Shared Activities, Education-Oriented Behavior, and Allowing Children to Own Smart-Phones on the Smart Media Usage Patterns of Elementary School Children (어머니의 감독, 활동공유, 교육지향행동, 스마트폰 허용여부가 초등학교 저학년 아동의 스마트 미디어 이용패턴에 미치는 영향)

  • Kim, Yoon Kyung;Park, Ju Hee;Oh, So Chung
    • Korean Journal of Childcare and Education
    • /
    • v.17 no.3
    • /
    • pp.65-87
    • /
    • 2021
  • Objective: This study aimed to examine the effects of maternal monitoring, shared activities with children, maternal education-oriented behavior, and allowing children to own smart-phones on smart media usage patterns based on smart-phone usage time and purposes among elementary school children. Methods: The participants were 1,315 second-grade elementary school children from the 9th wave of PSKC. Latent profile analysis and the three-step estimation approach were used to examine the determinants of the latent profile and the effects of maternal parenting on the profile. Results: Four latent profiles were identified: 'High-level usage & Entertaining oriented,' 'Moderate-level usage & Social/entertaining oriented,' 'Moderate-level usage & Learning oriented,' and 'Low-level usage.' Additionally, results showed that each profile can be predicted by maternal monitoring, education-oriented behavior, and permitting children to own smart-phones. Conclusion/Implications: Our outcomes suggested that it would be necessary to understand the smart media usage patterns of elementary school children, considering both the amount of time spent with smart media and purposes of uses. Further, it is helpful for mothers to monitor children's daily activities, support their educational activities, and take the role of gatekeeper for smart media as a way of appropriate guidance for their children's use of smart media.

Identifying Dynamic Characteristics of Structures to Estimate the Performance of a Smart Wireless MA System (SWMAS의 성능 검증을 위한 구조물의 동특성 분석)

  • Heo, Gwang-Hee;Lee, Woo-Sang;Shin, Jae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2005
  • In this paper, a smart wireless MEMS-based accelerometer(MA) system has been designed and experimented for smart monitoring system of civil structures. Various performance and experimental tests have been carried out to evaluate whether this system is suitable for monitoring system of civil structures. First, we examined its sensitivity, resolution, and noise, specifically to evaluate the performance of the smart wireless MA system. The results of experiments enabled us to estimate performance of the MA in SWMAS in comparison to the value of data sheet from MA. Second, characteristics of model structure were analyzed by the ambient vibration test based on the NExT combined with ERA. Finally, this analysis was compared to the one that was made by FE results, and the comparison proved that a smart wireless MA system was fitted in smart monitoring system effectively.

Implementation of a Vessel USN for Safety Monitoring System Based on ZigBee (선박 및 해양구조물의 안전 모니터링 정보 획득을 위한 ZigBee Sensor node 적용에 관한 연구)

  • Kim, Dae-Seok;Lee, Kyung-Ho;Lee, Jung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.169-181
    • /
    • 2014
  • Recently ships and ocean platforms are becoming increasingly technological, unmanned, and huge. Maintenance and safety monitoring of these products is very important for safety reasons. Therefore, real-time monitoring of safety regions, such as the engine room, and hull structure, and environmental states, like fire and pressure of LNG tanks, is required for the sustainable ships. In this paper, a ZigBee-based wireless sensor network is suggested to monitor ships and ocean platforms effectively. However, this causes some telecommunication problems because these products are made of steel. To resolve this problem, we use the mesh networking of Zig-Bee that can monitor the regions and environmental states consistently. The telecommunication of such a monitoring system is tested on a real container ship and its performance is verified. The real-time monitoring results are displayed on the users' smart devices.

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

Glove Type Heart Rate Monitoring System Using Blood Flow Change (혈류량 변화를 이용한 장갑형 심박수 모니터링 시스템)

  • Han, Yun-Cheol;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.503-504
    • /
    • 2017
  • Recently, economic growth in the world has increased interest in healthy life, and the smart health care industry is growing. In the field of smart healthcare, wearable-type biometric information measurement technology has been highlighted due to the importance of IoT technology. The purpose of this study is to develop a wearable heart - rate monitoring system that can be applied to wearable health care and glove - type monitoring that enables convenient monitoring of heart rate during activity. For this purpose, a glove - type wearable health care system was developed and its performance was evaluated. Experimental results showed that the heartbeat monitoring was possible even in the presence of actual daily activities.

  • PDF

A Study on the A·R type Monitoring Technique using QR-code and Environment Monitoring Sensor Based on Smart Device (QR코드와 환경감시센서를 활용한 스마트 디바이스기반 증강현실형 환경모니터링 기술 연구)

  • Kim, Chan;Shin, Jaekwon;Cha, Jaesang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.261-265
    • /
    • 2012
  • The applications of augmented reality technology is increasing in the several field by IT convergence and we find augmented reality application easily in the smart device application area. And then, to attempt to use augmented reality technology in advantage, exhibitions and performances was activated. However, it less than other fields of augmented reality technology expertise yet. Among them services to Use in fusion with monitoring are lacking. In this paper, we proposed the augmented reality monitoring technology based on smart device. It is able to incorporate QR-code which is already building for the purpose of advertising promotional materials with augmented reality technology in many areas. Therefore, it is able to utilize unattended building or automation equipment facilities using QR-code and environmental monitoring sensor in the industry.

Development of MEMS Accelerometer-based Smart Sensor for Machine Condition Monitoring (MEMS 가속도계 기반 기계 상태감시용 스마트센서 개발)

  • Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.448-452
    • /
    • 2007
  • Many industrial operations require continuous or nearly-continuous operation of machines, which if interrupted can result in significant financial loss. The condition monitoring of these machines has received considerable attention recent years. Rapid developments in semiconductor, computing, and communication with a remote site have led to a new generation of sensor called "smart" sensors which are capable of wireless communication with a remote site. The purpose of this research is the development of smart sensor using which can on-line perform condition monitoring. This system is addressed to detect conditions that may lead to equipment failure when it is running. Moreover it will reduce condition monitoring expense using low cost MEMS accelerometer. This sensor can receive data in real-time or periodic time from MEMS accelerometer. Furthermore, this system is capable for signal preprocessing task (High Pass Filter, Low Pass Filter and Gain Amplifier) and analog to digital converter (A/D) which is controlled by CPU. A/D converter that converts 10bit digital data is used. This sensor communicates with a remote site PC using TCP/IP protocols. Wireless LAN contain IEEE 802.11i-PSK or WPA (PSK, TKIP) encryption. Developed sensor executes performance tests for data acquisition accuracy estimations.

  • PDF

Design of Self-Powered Sensor System for Condition Monitoring of Industrial Electric Facilities (산업전기 설비의 상태 감시를 위한 자가 발전 센서 시스템의 설계)

  • Lee, Ki-Chang;Kang, Dong-Sik;Jeon, Jeong-Woo;Hwang, Don-Ha;Lee, Ju-Hun;Hong, Jeong-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.264-266
    • /
    • 2005
  • Recently, on-line diagnosis methods through wired and wireless networks are widely adopted in the diagnosis of industrial Electric Facilities, such as generators, transformers and motors. Also smart sensors which includes sensors, signal conditioning circuits and micro-controller in one board are widely studied in the field of condition monitoring. This paper suggests an self-powered system suitable for condition-monitoring smart sensors, which uses parasitic vibrations of the facilities as energy source. First, vibration-driven noise patterns of the electric facilities are presented. And then, an electromagnetic generator which uses mechanical mass-spring vibration resonance are suggested and designed. Finally energy consumption of the presented smart sensor, which consists of MEMS vibration sensors, signal conditioning circuits, a low-power consumption micro-controller, and a ZIGBEE wireless tranceiver, are presented. The usefulness and limits of the presented electromagnetic generators in the field of electric facility monitoring are also suggested.

  • PDF

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.