• Title/Summary/Keyword: Smart inverter

Search Result 61, Processing Time 0.021 seconds

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Detection and Classification of Open-phase Faults in PMSM Using Extended Kalman Filter and Multiple Model (확장칼만필터 및 다중모델 기반 영구자석 동기전동기 권선 개방 고장의 검출 및 분류)

  • Minwoo Kim;Junhyeong Park;Sangho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 2023
  • Open-phase fault in a Permanent Magnet Synchronous Motor (PMSM) occurs due to disconnection of phases of motor windings or inverter switch failures. When an open-phase occurs, it leads to the generation of torque ripples and vibrations in the motor, which can have a critical impact on the safety of the vehicle (including aircraft) using a PMSM as an actuator. Therefore, rapid fault detection and classification are essential. This paper proposes a classification method for detecting open-phase faults and locating fault positions in a PMSM used in aircraft applications. The proposed approach uses an Extended Kalman Filter for fault diagnosis, and it subsequently classifies faults using a Multiple Model filter.

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Design Methodology of Passive Damped LCL Filter Using Current Controller for Grid-Connected Three-Phase Voltage-Source Inverters

  • Lee, Jun-Young;Cho, Young-Pyo;Kim, Ho-Sung;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1178-1189
    • /
    • 2018
  • In grid-connected voltage-source inverters (VSIs), when compared with a simple inductive L filter, the LCL filter has a better performance in attenuating the high frequency harmonics caused by the pulse-width modulation of power switches. However, the resonance peaks generated by the filter inductors and capacitors can make a system unstable. In terms of simplicity and filter design cost, a passive damping method is generally preferred. However, its high power loss and degradation in high frequency harmonic attenuation are significant demerits. In this paper, a mathematical design solution for a passive LCL filter to derive filter parameters suppressing the high frequency current harmonics to 0.3% is proposed. The minimum filter inductance can be obtained to reduce the size of the filter. Furthermore, a minimum damping resistance design considering a current controller is analyzed for a stable closed-loop system. The proposed design method is verified by experimental results using a 5-kW three-phase prototype inverter.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

A Hybrid PCS Considering on a Residential Energy Storage System (가정용 ESS를 고려한 하이브리드 PCS)

  • Jung, Doo-Yong;Kim, Ji-Hwan;Choi, Seong-Chon;Lee, Su-Won;Han, Hee-Min;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • In recent years, technology for storing a preliminary power or a surplus of photovoltaic energy is required. This technique, as well as store a preliminary energy and improve the reliability of the gird safety. This system can plan a efficient power generation through the flexibility of the power supply from the perspective of not only provider but also user. Accordingly, the realization of the smart grid can be expected. This paper proposes a hybrid PCS using a photovoltaic and a lithium-polymer battery with the characteristics of high density energy. The main energy source of a hybrid PCS is a photovoltaic, grid and the auxiliary energy source is a lithium-polymer battery. The operation of a proposed system in this paper is verified with simulation and experimental results.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Influence of the Parasitic Inductor Resistance on Controller Design of Boost Converter for Renewable Energy System including an Energy Storage (에너지 저장장치를 포함하는 신재생에너지원용 부스트 컨버터의 인덕터 기생저항에 따른 제어기 설계 영향 분석)

  • Park, Sun-Jae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • Nowadays, industry of smart grid is important for practical use of the renewable energy. In this situation, it is important to use the energy storage to make more stable and efficient renewable energy sources. The power conditioning systems consist in a boost converter which makes renewable energy source connected with the grid-connected inverter and the charger/discharger which takes the energy transfer between the boost converter and an energy storage. The effects on the controller design of each converter must be investigated to avoid the instability of the entire system. small-signal modelling of the boost converter and charger/discharger have been done and a controller design example is also presented. In this paper, effects on the controller design of the boost converter and the charger/discharger are investigated according to the existence of the parasitic resistance of the boost converter. In conclusion, the parasitic resistance of the inductor should be considered from the aspect of both the frequency domain analysis and time domain simulation using both MATLAB and PSIM.

Comparative analysis of weldability using a three-point bending test of a movable iron core welder and a digital welder that outputs a sine wave (가동 철심형 용접기와 정현파를 출력하는 디지털 용접기의 3점식 굽힘시험을 이용한 용접성 비교 분석)

  • Jong-Sig Kim;Kwang-Ho Lee;Yi-Hwan Joo;Jong-Chul Koh;Gyeong-Yeol Yun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.605-611
    • /
    • 2023
  • In this study, in order to reduce energy that affects the natural environment, a moving iron core type welding machine and a digital welding machine (inverter type) with low power consumption are compared in shielded arc welding, and the parts that use less power and have the same weldability conditions are identified. want to check. The movable iron core welder uses alternating current that outputs a sine wave, and the digital welder also generates a sine wave alternating current, so it must have the same conditions, low power consumption, and the same weldability. However, weldability can be verified in various ways, but the analysis is limited to the qualification test in the field of national technical qualification welding.

Characteristics of the media under a self-propelled compost turner in button mushroom cultivation (양송이버섯 재배시 자주식 배지교반기 활용 배지의 특성 및 수량성)

  • Lee, Chan-Jung;Yu, Byeong-Kee;Park, Hye-sung;Lee, Eun-Ji;Min, Gyeong-Jin
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.274-279
    • /
    • 2020
  • This study was conducted to investigate the characteristics of the medium used on the composting step, comparing the excavator agitator with the self-propelled turner. The temperature of the outdoor composting medium tended to increase rapidly after flipping in the turner. The late composting medium temperature was maintained at the excavator treatment area (farm practice), and the late composting effect progressed. During the field composting stage, various microorganisms such as Bacillus spp., Actinomycetes, fluorescent Pseudomonas spp., and filamentous fungi were distributed in the medium, and the density of aerobic bacteria involved in the decomposition of the medium was increased. Under high-temperature composting conditions, blue fungi, and mesophilic actinomycetes were inhibited or killed. Thermophilic actinomycetes, which play an important role in decomposing organic matter, showed higher densities than those observed in farm practices in the self-propelled turner process. The length of rice straw was slightly shorter when the self-propelled turner was used, and the water content did not show any significant difference between treatments. The a and b values tended to increase as the inverter was turned over. The CN ratio of the composting broth was lowered from 23.1 to 16.2 for the 5th turnover in the context of farming practices, and from 23.3 to 16.9 in the context of the self-propelled turner. The yield of each treatment was increased by 20% in 1 period, 28% in 2 periods, and 26% in 3 periods; the overall yield was 23%.