• Title/Summary/Keyword: Smart farm data

Search Result 221, Processing Time 0.02 seconds

IoT Data Processing Model of Smart Farm Based on Machine Learning (머신러닝 기반 스마트팜의 IoT 데이터 처리 모델)

  • Yoon-Su, Jeong
    • Advanced Industrial SCIence
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2022
  • Recently, smart farm research that applies IoT technology to various farms is being actively conducted to improve agricultural cooling power and minimize cost reduction. In particular, methods for automatically and remotely controlling environmental information data around smart farms through IoT devices are being studied. This paper proposes a processing model that can maintain an optimal growth environment by monitoring environmental information data collected from smart farms in real time based on machine learning. Since the proposed model uses machine learning technology, environmental information is grouped into multiple blockchains to enable continuous data collection through rich big data securing measures. In addition, the proposed model selectively (or binding) the collected environmental information data according to priority using weights and correlation indices. Finally, the proposed model allows us to extend the cost of processing environmental information to n-layer to a minimum so that we can process environmental information in real time.

CCMS (Crop Classification Management System) Detecting Growth Environment Changes to Improve Crop Production Rate (작물 생산률 향상을 위한 생장 환경 변화 탐지 CCMS(Crop Classification Management System))

  • Choi, Hokil;Lee, Byungkwan;Son, Surak;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • In this paper, we propose the Crop Classification Management System (CCMS) that detects changes in growth environment to improve crop production rate. The CCMS consists of two modules. First, the Crop Classification Module (CCM) classifies crops through CNN. Second, the Farm Anomaly Detection Module (FADM) detects abnormal crops by comparing accumulated data of farms. The CCM recognizes crops currently grown on farms and sends them to the FADM, and the FADM picks up the weather data from the past to the present day of the farm growing the crops and applies them to the Nelson rules. The FADM uses the Nelson rules to find out weather data that has occurred and adjust farm conditions through IoT devices. The performance analysis of CCMS showed that the CCM had a crop classification accuracy of about 90%, and the FADM improved the estimated yield by up to about 30%. In other words, managing farms through the CCMS can help increase the yield of smart farms.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

Multiple Case Analysis Study on Business Model Types and Components of Startups: Focusing on Leading Overseas Smart Farm Companies (스타트업의 비즈니스 모델 유형 및 구성요소에 대한 다중 사례 분석 연구: 해외 스마트팜 선도기업을 중심으로)

  • Ahn, Mun Hyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.41-55
    • /
    • 2023
  • In order to secure sustainable competitiveness of startups, business model innovation is an important task to achieve competitive advantage by transforming the various elements that make up the business model. This study conducted a multi-case analysis study on leading smart farm companies around the world using an analysis framework based on business model theory. Through this, we sought to identify business model types and their constituent elements. For this, 19 companies were selected from the list of top 10 investment startups of the year for the past three years published by Agfunder, a global investment research company specializing in AgTech. Then data collection and analysis of the company cases were conducted according to the case study protocol. As a result of the study, the business model types were analyzed into four types: large-scale centralized production model, medium-to-large local distributed production model, small-scale hyperlocal modular FaaS model, and small-scale hyperlocal turnkey solution supply model. A comparative analysis was conducted on five business model components for each type, and strategic implications were derived through this. This study is expected to contribute to improving the competitiveness of domestic smart farm startups and diversifying their strategies by identifying the business models of overseas leading companies in the smart farm field using an academic analysis framework.

  • PDF

The fourth industrial revolution and the future of food industry (4차산업혁명과 식품산업의 미래)

  • Yoon, Suk Hoo
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.60-73
    • /
    • 2017
  • Recently, the whole world is facing an unprecedented moment of opportunity, so-called The Fourth Industrial Revolution. As emphasized in the World Economic Forum held in January of 2016 at Davos, the Fourth Industrial Revolution is not merely a changes of technological devices. The fundamental of the revolution is new, innovative, and visionary business models which change the whole systems dramatically. One of the greatest challenges is to feed an expected population of 9 billion by 2050 in a impactful way. The system should be sustainable as well as beneficial in improving the lives of people in the food chain along with the ecological health of environment. The technological advances of the Fourth Industrial Revolution are expected to improve our food system. The smart farm technology such as precision planting and irrigation techniques will improve the yields of food materials. The smart food transportation and logistics systems will substantially improve the safety and human nutrition. The adaptation the Fourth Industrial Revolution technology will induce the smart supply chains, smart production, and smart products in food industry due to its flexibility and standardization. This will lead the manufactures to adapt to customers' changing product specifications and traceable services in a timely manner.

A Study on the Architecture Design of Smart Farm System based on IoT Technology (IoT 기반의 스마트 팜 시스템 구조설계에 관한 연구)

  • Ghil, Min-Sik;Kwak, Dong-Kurl;Choi, Shin-Hyeong;Shin, Jong-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.543-545
    • /
    • 2019
  • Recently, the demand for smart farms is increasing due to the increase in the cultivation area such as horticulture, fruit trees and special crops. However, due to the irregular weather changes and the cultivation method of the crops due to the different cultivation environment, there are frequent occurrence of diseases and insect pests and infectious diseases due to system error or carelessness, and the cycle is also very short. In addition, the Smart Farm business has been built by combining various sensors (temperature, humidity, CO2, illumination) and LED lighting, but it is costly in terms of frequent errors, lack of power supply, And thus the management can not be efficiently managed. Therefore, this paper combines real time sensing technology based on IoT Platform and high performance control technology to control pests and equipment errors and monitor the growth status of crops in real time based on big data analysis and Artificial Intelligence System.

  • PDF

Factors Influencing Entrepreneurial Intention of Young Entrepreneurs Preparing to Operate Smart Farms - The Mediating Effect of Entrepreneurship and Entrepreneurial Opportunity Recognition - (스마트팜 예비 청년창업농의 창업의지 영향요인 분석 - 기업가정신과 창업기회인식의 매개효과 -)

  • Ji-Bum Um;Myeong-Eun Park
    • Journal of Agricultural Extension & Community Development
    • /
    • v.29 no.4
    • /
    • pp.251-264
    • /
    • 2022
  • This study aimed to identify the factors that influence young entrepreneurs' desire to start a smart farm business. Young entrepreneurs' entrepreneurial self-efficacy, entrepreneurial intention, entrepreneurship, and Entrepreneurial opportunity recognition were modeled structurally, and the mediating effect of entrepreneurship and entrepreneurial opportunity recognition was investigated. Data were conducted from 159 usable questionnaires. The following are the findings of this study. Entrepreneurial self-efficacy did not have a significant effect on entrepreneurial intention, but entrepreneurship and entrepreneurial opportunity recognition were found to have a mediating effect on entrepreneurial intention. Therefore, the preparation of training programs to encourage entrepreneurship or the dissemination of pertinent information to identify opportunities should take precedence over immediate startup.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm (머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측)

  • Kim, Na-eun;Han, Hee-sun;Arulmozhi, Elanchezhian;Moon, Byeong-eun;Choi, Yung-Woo;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry's yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of 'Seolhyang' (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.

Research on Ways to Apply Smart Livestock Farming Based on Metaverse (메타버스 기반의 축사 스마트팜 적용 방안 연구)

  • YeonJae Oh
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.136-144
    • /
    • 2024
  • In recent years, with the rapid development of IT technology and the aging of the population, various solutions to the labor shortage have emerged. In the livestock industry, there are an increasing number of management systems that utilize artificial intelligence technology. The Metaverse Smart Farm is a system that combines the digital virtual world with advanced agricultural technology. With this system, farmers can monitor the health of their animals in real time without having to visit the barns, and analyze the data collected through sensors and cameras for more efficient agricultural management. In addition, the barn environment can be adjusted through a remote control function, which is expected to reduce labor and revitalize the livestock industry.