• Title/Summary/Keyword: Smart Training System

Search Result 241, Processing Time 0.024 seconds

A Study on Mobile Virtual Training System using Augmented Reality (증강현실 기술을 활용한 모바일 가상훈련 시스템의 연구)

  • Kim, Yu-Doo;Lee, Seon-Ung;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1047-1052
    • /
    • 2011
  • Various services are created using mobile networks after mobile devices such as smart phones and tablet PCs are propagated rapidly. However, the contents of smart devices are not enough diversity because they depend on games and messaging services primarily. In this paper, we described the study have progressed based on mobile devices and networks using augmented reality technologies about virtual education system.

Development of Tourism Information Named Entity Recognition Datasets for the Fine-tune KoBERT-CRF Model

  • Jwa, Myeong-Cheol;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • A smart tourism chatbot is needed as a user interface to efficiently provide smart tourism services such as recommended travel products, tourist information, my travel itinerary, and tour guide service to tourists. We have been developed a smart tourism app and a smart tourism information system that provide smart tourism services to tourists. We also developed a smart tourism chatbot service consisting of khaiii morpheme analyzer, rule-based intention classification, and tourism information knowledge base using Neo4j graph database. In this paper, we develop the Korean and English smart tourism Name Entity (NE) datasets required for the development of the NER model using the pre-trained language models (PLMs) for the smart tourism chatbot system. We create the tourism information NER datasets by collecting source data through smart tourism app, visitJeju web of Jeju Tourism Organization (JTO), and web search, and preprocessing it using Korean and English tourism information Name Entity dictionaries. We perform training on the KoBERT-CRF NER model using the developed Korean and English tourism information NER datasets. The weight-averaged precision, recall, and f1 scores are 0.94, 0.92 and 0.94 on Korean and English tourism information NER datasets.

Personal Training Suggestion System based on Hybrid App (하이브리드 앱 기반의 개인 트레이닝 추천 시스템)

  • Kye, Min-Seok;Jang, Hyeon-Suk;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1475-1480
    • /
    • 2014
  • Wellness is IT fused with the user manage and maintain the health of a service can help you. If you are using an existing Fitness Center to yourself by choosing appliances that fit with the risk of injury in order to learn how the efficient movement had existed for a long time was needed. To resolve, use the personal training but more expensive cost of people's problems, and shown again in the habit of exercising alone will have difficulty. This paper provides a variety of smart phones based on a hybrid app with compatibility with the platform and personalized training market system. Users of the Fitness Center is built into smart phones in the history of their movement sensors or transmits to the Web by typing directly. This is based on exercise programs tailored to users via the training market. Personal training marketplace has a variety of users, check the history of this movement he can recommend an exercise program for themselves can be applied by selecting the. This provides users with the right exercise program can do long-term exercise habits can be proactive and goal setting.

Removing Out - Of - Distribution Samples on Classification Task

  • Dang, Thanh-Vu;Vo, Hoang-Trong;Yu, Gwang-Hyun;Lee, Ju-Hwan;Nguyen, Huy-Toan;Kim, Jin-Young
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.80-89
    • /
    • 2020
  • Out - of - distribution (OOD) samples are frequently encountered when deploying a classification model in plenty of real-world machine learning-based applications. Those samples are normally sampling far away from the training distribution, but many classifiers still assign them high reliability to belong to one of the training categories. In this study, we address the problem of removing OOD examples by estimating marginal density estimation using variational autoencoder (VAE). We also investigate other proper methods, such as temperature scaling, Gaussian discrimination analysis, and label smoothing. We use Chonnam National University (CNU) weeds dataset as the in - distribution dataset and CIFAR-10, CalTeach as the OOD datasets. Quantitative results show that the proposed framework can reject the OOD test samples with a suitable threshold.

Design of Image Generation System for DCGAN-Based Kids' Book Text

  • Cho, Jaehyeon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1437-1446
    • /
    • 2020
  • For the last few years, smart devices have begun to occupy an essential place in the life of children, by allowing them to access a variety of language activities and books. Various studies are being conducted on using smart devices for education. Our study extracts images and texts from kids' book with smart devices and matches the extracted images and texts to create new images that are not represented in these books. The proposed system will enable the use of smart devices as educational media for children. A deep convolutional generative adversarial network (DCGAN) is used for generating a new image. Three steps are involved in training DCGAN. Firstly, images with 11 titles and 1,164 images on ImageNet are learned. Secondly, Tesseract, an optical character recognition engine, is used to extract images and text from kids' book and classify the text using a morpheme analyzer. Thirdly, the classified word class is matched with the latent vector of the image. The learned DCGAN creates an image associated with the text.

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Implementation of Image Enhancement Algorithm using Learning User Preferences (선호도 학습을 통한 이미지 개선 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.71-75
    • /
    • 2018
  • Image enhancement is a necessary end essential step after taking a picture with a digital camera. Many different photo software packages attempt to automate this process with various auto enhancement techniques. This paper provides and implements a system that can learn a user's preferences and apply the preferences into the process of image enhancement. Five major components are applied to the implemented system, which are computing a distance metric, finding a training set, finding an optimal parameter set, training and finally enhancing the input image. To estimate the validity of the method, we carried out user studies, and the fact that the implemented system was preferred over the method without learning user preferences.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Design of Acupuncture Controller and Dummy for Acupuncture Training System based MR (MR 기반 침술 훈련 시스템을 위한 침술 컨트롤러 및 인체모형 설계)

  • Ryu, Chang Ju;Lee, Sang Duck;Han, Seung Jo
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.86-91
    • /
    • 2020
  • The current trend of the education market is the development of the fourth industrial revolution and the development of ICT, and various technologies are developing into edu-tech technology that is integrated into the education system. In particular, the market for edu-tech systems capable of lifelike immersive learning effects in virtual space is expanding. However, education in Korean medicine is not objective because of the absence of educational simulators and systems to train and evaluate acupuncture. In this paper, we propose an acupuncture controller and a human body model to increase the effectiveness of acupuncture point training as a follow-up study of "Design of Acupuncture Contents and Dummy for Acupuncture Point Training System". Through the proposed acupuncture controller and Dummy, the accuracy of acupuncture points for the acupuncture point data matching and content motion recognition rate is presented. In addition, the results of temperature and humidity and temperature change tests for evaluating the environmental reliability of the controller are presented.

Design and Implementation of Smart phone-based Records Management Application for Sports Clubs (운동부 지도자들을 위한 스마트폰 기반 기록관리 어플리케이션의 설계 및 구현)

  • Ha, Tai-Hyun;Kim, Se-Min
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.395-402
    • /
    • 2012
  • This study has been conducted to design and implement smart phone-based application which can keep records effectively to improve athletes' ability. To boost their performance, they need to receive training as realistic as possible. As a way to do that, training should be performed with some fitness equipments, sporting apparatus, facilities, and conditions. However, it is also possible to improve their ability by motivating athletes with checking and recording their performance. This study ascertains that using scoring records actually motivates athletes when comparing the result of youth basketball team using the records keeping system with that of not using it. Accordingly, smart phone-based records keeping application has been designed and developed. Also, through a survey targeting athletic coaches who have used the system, training efficiency has been measured and it turns out that it actually motivates athletes to improve their abilities.