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Abstract 
Out – of – distribution (OOD) samples are frequently encountered when deploying a classification model in 

plenty of real-world machine learning-based applications.  Those samples are normally sampling far away from 

the training distribution, but many classifiers still assign them high reliability to belong to one of the training 

categories. In this study, we address the problem of removing OOD examples by estimating marginal density 

estimation using variational autoencoder (VAE). We also investigate other proper methods, such as temperature 

scaling, Gaussian discrimination analysis, and label smoothing. We use Chonnam National University (CNU) weeds 

dataset as the in – distribution dataset and CIFAR-10, CalTeach as the OOD datasets. Quantitative results show 

that the proposed framework can reject the OOD test samples with a suitable threshold. 
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 INTRODUCTION I.

 

Image classification is a supervised machine learning 

problem where given an image, the learning model can 

output its identity. Particularly, vision-based 

classification is considerately important since it is the 

primary step for further operations, for example, 

biometric security based on face or fingerprint images. 

Object classification is also a core component of smart 

systems (e.g., smart farm, smart factory) where 

self-propelled robots and learning models are 

integrated to supervise a process.  Over a decade, 

image classification methods have developed 

significantly to cope with the advancement of 

hardware and especially learning models. 

Research on image recognition using handcrafted 

features and sallow learning has a long tradition. 

Well-known handcraft features such as HOG [1], 

SIFT/SURF [2], LBP [3] were frequently used as 

image descriptors and classified by single learning 

models (e.g support vector machine, logistic 

regression) or ensemble models (e.g random forest, 

AdaBoost). Previous studies have revealed that 

complex and large datasets are usually the most 

problematic to image classification, where simpler 

handcraft features are not enough to represent the 

visual structure of objects. 

A series of recent studies have indicated that Deep 

Learning approaches have outperformed traditional 

methods in image recognition. Especially, 

Convolutional Neural Networks (CNNs) can 

automatically learn coarse to fine features via the 

hierarchical mechanism of stacked convolutional 

layers [4]. Furthermore, ImageNet [5], a large-scale 

dataset, and the corresponding classification challenge 

have promoted the development of Deep Learning [6]. 

Also, many studies have gradually proved that deeper 

models with appropriate architecture [7, 8] benefit to 

image classification. 

However, Deep learning models usually behave 

wrongly with OOD samples. Precisely, given an OOD 

test example that is drawn far away from the 

in-distribution dataset, naïve models still assigned this 

sample the class probability with high confidence. 

Classifying an OOD sample into a known class is a 

considerable risk in practical applications. For example, 
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a self-driving car mistakenly recognizing an unknown 

traffic signal as an existent signal and acting in a 

misguided way will cause tremendous troubles. 

Several methods have been brought to address the 

problem of OOD detection. Nguyen et al. revealed that 

Deep neural networks (DNNs) are easy to be fooled 

by adversarial visual attacks [9], such as pattern 

disturbance or gradient adjustment, when the samples 

are adjusted to be meaningless to human vision but 

entrusted with high class-probability from DNNs. 

Having been one of the simplest techniques, a study 

about label smoothing of Muller showed that training 

DNN models with smoothing labels would prevent the 

network from becoming overconfident [10]. Although 

the raw class posterior output from DNNs is usually 

overconfident, Hendrycks considered it as a measure 

to detect OOD samples [11]. The author also 

formulated a set of baseline evaluators that were used 

in this literature. Non-linear classifiers structured by 

fully-connected layers in DNNs tend to be ambiguous 

about the boundary between in and out of distribution 

regions. For that reason, to construct a reliable 

classifier, Lee et al. employed Gaussian discriminant 

analysis regarding the input of feature vectors 

extracted from trained models instead of end-to-end 

models alone trained with softmax neural classifiers 

[12]. Marginal likelihood estimation is a direct way to 

detect OOD samples since those samples have 

marginal probability lower than in-distribution 

samples. Ren suggested using PixelCNN to estimate 

the marginal likelihood of observation and calculated 

its likelihood ratios for OOD detection [13]. Likewise, 

Lee trained a confidence-calibrated classifier for 

detecting OOD samples. Their method based on the 

assumption that OOD samples distributed uniformly 

surround the real distribution, hence a modified loss 

function of the generative model could be employed to 

draw the OOD samples and train the classifier jointly 

[14]. 

Despite many studies, the research in the field of 

OOD detection remains limited to large-scale datasets. 

Therefore, this study focuses on the large-scale 

weeds classification, where a reliable classifier greatly 

requires a mechanism to detect samples unlikely 

sampled from the training distribution, while recent 

frameworks only focus on classification accuracy. To 

address this problem, our study examined possible 

techniques that can eliminate the OOD samples in 

real-time. Furthermore, we introduce VAE as a 

straightforward estimator for marginal likelihood and 

effective to reduce the statistical error.  The rest of 

the paper is structured as follow: 

 Section 2 gives insight into the problem of 

OOD detection, where valid techniques are 

introduced. 

 Section 3 describes our framework and VAE 

method to detect OOD samples. 

 Section 4 gives a brief description of the 

datasets and shows experimental results. 

 Finally, the conclusion is given in section 5. 

 

 PRELIMINARIES II.

 

A. Problem definition 

OOD detection is a problem that arises when a 

classifier fails to eliminate OOD samples from the 

in-distribution. In other words, the classifier behaves 

over confidently and assigns a high class-probability 

to the OOD examples. Formally, it can be formulated 

from a supervised learning problem. Let 𝑿𝒊𝒏 ∈ 𝛀 is a 

random variable distributed as 𝑃௜௡(𝑿) , and 𝑌 ∈

{1, . . , 𝐾}  is the corresponding random variable 

associating to the label of 𝑿 ∈ 𝛀 , distributed as 

𝑃(𝑌|𝑿) . To estimate the joint data distribution 

𝑃௜௡(𝑿, 𝑌) = 𝑃(𝑌|𝑿)𝑃௜௡(𝑿) , ones sampling 𝑿௜ 

independently identical from 𝑃௜௡(𝑿)  and the 

corresponding label 𝑌௜  from 𝑃(𝑌|𝑿) . A question 

arises when a new 𝑿  is sampled by 𝑃(𝑿, 𝑌) =

𝑃(𝑌|𝑿)𝑃(𝑿), is it belongs to 𝑃௜௡(𝑿)? If not, we denote 

it as 𝑿௢௨௧ , which is unlikely distributed as 𝑃௜௡(𝑿). 

 

B. Label smoothing 

Label smoothing is a training technique introduced by 

Szegedy [7] to increase classification accuracy. In 

contrast to "hard" targets encoded by one-hot 

encoding, label smoothing approaches with "soft" 

target: 

𝑝௞ = 𝑃(𝑌 = 𝑘|𝑿 = 𝒙)

= ቐ
𝛼     𝑤ℎ𝑒𝑟𝑒 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑘,

1 − 𝛼

𝐾 − 1
                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

(1)

) 

where 𝑝௞ is the class probability of belonging to class 

k given an image 𝑥. In typical hard encoding, 𝑝௞ = 1 if 

𝑥  belongs to class k, since ∑ 𝑝௞
௄
௞ୀଵ = 1 , the rest 

probabilities are "0", 𝑝ℎஷ௞ = 0. As a result, the hard 

encoding is overconfident to the correct class and 

makes DDNs miscalibrated. A direct consequence of 

hard encoding is to squash out the probability of 

incorrect classes. Precisely, when minimizing the 
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cross-entropy of a variable 𝑋 , 

𝐻(𝒑, 𝒑ෝ) = ∑ −𝑝௞ log 𝑝̂௞
௄
௞ୀଵ , between the true probability 

𝑝௞  and the network's output  𝑝̂௞ ; 𝐻ℎ௔௥ௗ
(𝒑, 𝒑ෝ) =

−𝑝௞ log 𝑝̂௞  with hard labels contains only 𝑝̂௞ , while 

𝐻௦௢௙௧(𝒑, 𝒑ෝ) = −𝛼 log 𝑝̂௞ − (1 − 𝛼) ∑ log 𝑝̂௞
௄
ℎஷ௞

 with soft 

labels involves all 𝑝̂௞ for backpropagation. Therefore, 

training a network with hard labels usually causes the 

correct logit to be larger than any incorrect logits. 

While label smoothing drives the difference between 

the correct logit and incorrect logits not overwhelming. 

 

C. Temperature scaling 

Temperature scaling is the simplest version of Platt 

scaling [15] when only one single scalar parameter 

𝑇 > 0 is used to scale all the class logits before being 

fed through the softmax layer. 

𝑝̂௞ = 𝑃൫ 𝑌෠ = 𝑘ห𝑿 = 𝒙൯ =
exp୩(𝑓ఏ (𝒙)/𝑇)

∑ exp
୩′(𝑓ఏ(𝒙)/𝑇)௄

௞′ୀଵ

, 
(2)

2) 

where 𝑓ఏ  is the classification model parameterized 

by 𝜃 taking an image 𝑥 as the input and producing the 

score vector 𝒛 = 𝑓ఏ(𝒙) , also known as logits. The 

scaling factor 𝑇 has a function that flattens the density 

𝑃൫ 𝑌෠ห𝑿൯ =
ଵ

௄
, ∀𝑘 when 𝑇 → ∞ or collapsed 𝑃൫ 𝑌෠ห𝑿൯ to 

one point when 𝑇 → 0. Naturally, temperature scaling 

is a unique solution when finding the most uncertainty 

distribution that satisfied unbias estimation for 

𝑓ఏ(𝑥௜), ∀𝑖. Another advantage of temperature scaling is 

keeping predictions of the model unchanged since the 

mode of density 𝑃൫𝑌෠ห𝑿൯ is consistent when scaling. 

Note that temperature scaling is only applied to the 

testing phase, meanings that 𝑇 = 1 during the training 

process. 

 

D. Gaussian discrimination analysis 

The vanilla classifier integrated into DNNs is 

constructed by fully connected layers to form a non – 

linear mapping before forging separable hyperplanes 

between classes. In terms of the discriminative model, 

training the network with cross-entropy loss function 

is analogous to assign the multinominal distribution 

explicitly to the posterior 𝑃(𝑌|𝑿) = 𝑀(௣భ,..,௣೙)(𝑔(𝑿)) to 

solve the inference problem of the class probability. 

Otherwise, in the generative approach, multivariate 

Gassausian distribution is assumed for the class 

conditional 𝑃(𝑔(𝑿)|𝑌 = 𝑐) = ℕ(𝑔(𝑿)|𝝁𝒄, 𝚺), where 

𝝁ෝ௖ =
1

𝑁௖
෍ 𝑔(𝒙௜)

௫೔∈஼

, 
(3) 

𝚺෠ =
1

𝑁
෍ ෍ (𝑔(𝒙𝒊) − 𝝁ෝ 𝒄)(𝑔(𝒙𝒊) − 𝝁ෝ𝒄)்

௫೔∈஼

,

஼

 
(4) 

𝝁ෝ𝒄 is the samples mean calculated over samples of 

class 𝐶, while 𝚺෠ is the tied covariance shared across 

all classes. 𝑔(𝒙) denotes for the feature extraction 

part inside a DNN. To obtain the feature extractor 

𝑔(𝒙), we trained the network 𝑓ఏ  with vanilla softmax 

classifier and keep only the feature extraction part, as 

depicted in Figure 1. The experimental results show 

that those features in the representation space could 

still be separable. Meanwhile, the space output from 

fully – connected layers in the softmax-based 

approach is usually overfitted to the labels. Therefore, 

solving the inference problem of class probability 

𝑃(𝑌|𝑿)  is not sufficient to gain insight into the 

separated boundary between in – distribution and 

OOD region.  

Furthermore, Gaussian discrimination analysis 

supplies an uncertainty metric based on estimating the 

covariances of class – conditional densities. OOD 

samples can be detected by calculating the maximum 

value of Mahalanobis distance [12] 

𝑚(𝒙) = max
௖

−(𝑔(𝒙) − 𝝁ෝ𝒄)்Σ
෡ ିଵ

(𝑔(𝒙) − 𝝁ෝ𝒄) 
(5) 

In the representation space, the Mahalanobis distance 

from OOD samples to the center of classes will be 

larger than that of in – distribution samples. 

Mahalanobis distance takes spreads of class density 

into account, which is not emphasized in the 

discriminative model. As a result, OOD samples can be 

eliminated by determining a threshold based on the 

Mahalanobis distance of in distribution samples. 

 PROPOSED FRAMEWORK 

 
A. Classification model 

In this work, we consider a deep neural network 

(DNN) as a classification model and particularly 

experiment with ResNet18 [8]. ResNet is a 

well-known architecture on image understanding 

tasks, which has been successfully employed or a 

back-bone model in plenty of research such as image 

classification, object detection, and image 

segmentation. For a brief explanation, ResNet 

architecture consists of two core parts, feature 

extraction and class probability calculation, as shown 

in Figure 1. This network organizes information 

flowing from one layer to the next with the use of 

shortcuts so that the gradient does not vanish when 

traveling through a deep process. Besides, the 

classification mechanism in ResNet is vanilla, in which 

a series of fully – connected layers is used to model a 

non – linear classifier with softmax class 

probability  𝑝̂௞ = 𝑃൫𝑌෠ = 𝑘ห 𝑿 = 𝒙) =
ୣ୶୮ౡ൫௙ഇ(𝒙)൯

∑ ୣ୶୮
ౡ′

൫௙ഇ(𝒙)൯಼
ೖ′సభ

, 
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where 𝑓ఏ is the classification model parameterized by 

𝜃 taking an image 𝑥 as the input and producing the 

score (logit) vector 𝒛 = 𝑓ఏ(𝒙). Although increasing the 

width and depth of a network will enhance its 

capability to capture rich features, the network tends 

to be overconfident. Moreover, techniques widely 

used in training DNN, such as batch normalization and 

weight decay, make the model miscalibrated [15]. To 

show that DNNs trained with softmax could not detect 

OOD  samples, we trained ResNet on the CNU weed 

dataset and tested on CIFAR dataset, the results are 

illustrated in Figure 2. Details will be given in section 4. 

Although only experimenting with ResNet, we note 

that our study can be expanded to other architectures. 

 
Figure 1. A brief overview of ResNet: architecture 

involves two parts, feature extraction and classifier, the 

feature extraction part consists of convolutional layers 

and shortcuts path to extract features from an image, 

the classifier is made from fully connected layers and 

softmax at the last layer. 

 

 
Figure 2. The vanilla softmax classifier (with ResNet18) 

trained on the CNU weeds dataset failed to detect OOD 

samples from CIFAR10 and Caltech dataset. 

 

B. Variational Autoencoder 

 It has been proven that a generative model might be 

sufficient to detect OOD samples [16, 13, 14]. In the 

generative approach, the generative distribution 

𝑃௜௡(𝑿) is estimated by the training dataset; hence the 

ODD samples could be eliminated by determining the 

low probability region. Noticeably, 𝑃௜௡(𝑿) is generally 

intractable because of the curse of dimension and 

lacking an infinite dataset. Instead of formulating 

𝑃௜௡(𝑿)  in the close form, one might want to 

approximate it by a parametric model.  There are a 

number of researches that address the problem of 

estimating the distribution of a dataset, for example, k 

nearest neighbor, Pazen windows or Gaussian mixture 

model are well-known methods. To expand the 

representation capability of parametric models, 

density functions are approximated by more 

complicated forms such as Masked Autoencoder [16], 

PixelCNN [13]. Recently, generative adversarial 

networks (GANs) have also been noticed as an 

efficient way to model a sampling model as well as 

applied for OOD detection [14].  

In this work, we employed Variational Autoencoder 

(VAE) [17] to approximate the data distribution 

𝑃௜௡(𝑿). Our approach is partly similar to the work in 

[16], where autoencoder was used to generate 

perturbed samples. Compared to the estimators 

introduced in [13], VAE – based estimator presents 

a latent variable 𝒁  to express perturbations of 𝑿 , 

instead of being dependent only on raw samples 𝑿, 

which is considerably high dimension. The former 

method of VAE is variational Bayes inference, which 

presented variational lower bound, equation 6, to 

measure the capability of the encoder model 𝑄(𝒁|𝑿). 

𝐿(𝑿) = 𝔼ொ(𝒁|𝑿)
[− log 𝑄(𝒁|𝑿) + log 𝑃(𝑿, 𝒁)], (6) 

where 𝑄(𝒁|𝑿)  is the encoder model,  an 

approximation for the intractable posterior 𝑃(𝒁|𝑿) , 

𝑃(𝑿, 𝒁) is the joint distribution. We note that the class 

variable 𝑌 is not considered in this approach to avoid 

turbulence. Equation 6 can be expanded to the 

criterion of VAE, as given in equation 7. 

𝐿(𝑿) = 𝔼ொ(𝒁|𝑿)[𝑙𝑜𝑔 𝑃(𝑿|𝒁)] − 𝐾𝐿(𝑄(𝒁|𝑿)||𝑃(𝒁)), (7) 

where 𝑃(𝑿|𝒁) is the decoder used to reconstruct X 

from the latent Z, 𝑃(𝒁) is prior distribution of 𝒁. In 

variational Bayes inference, the variational lower 

bound 𝐿(𝑿)  arises naturally from log marginal 

likelihood. 

log 𝑃(𝑿) = 𝐾𝐿൫𝑄(𝒁|𝑿)||𝑃(𝒁|𝑿)൯ + 𝐿(𝑿), (8) 

Trivially, maximizing the log marginal likelihood 

log (𝑃(𝑿)) and minimizing the KL divergence between 

the true posterior 𝑃(𝒁|𝑿)  and its approximation 

𝑄(𝒁|𝑿) is equivalent to maximize the variational lower 

bound 𝐿(𝑿). In DNN perspective, Furthermore, VAE is 

the consequence of parameterizing 𝑄(𝒁|𝑿)  and 

𝑃(𝑿|𝒁)  to encoder network and decoder network 

(Figure 3) jointly trained with variational 

reconstruction loss −𝐿(𝑿).  

In terms of implementation, we used the 

reparameterization trick [17] to sample from the prior 
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𝑃(𝒁) , the variational reconstruction loss −𝐿(𝑿)  is 

given in equation 9. 

−𝐿(𝒙) = −
1

2
෍ ቀ1 + 𝑙𝑜𝑔൫𝜎௝

ଶ൯ − ൫𝜇௝൯
ଶ

− ൫𝜎௝ ൯
ଶ

ቁ

௄

௝ୀଵ

+
𝛽

𝑁
෍‖𝒙 − 𝒚𝒊‖

ଶ

ே

௜ୀଵ

, 

(9) 

where 𝜇௝ , 𝜎௝  are output from the encoder network, 

which are parameters of the Gaussian distribution 

assumed for 𝑄(𝒁|𝑿) . 𝒚𝒊  is a reconstruction of 𝒙 

output from the decoder network, where 𝑃(𝑿|𝒁) is 

also assumed to distributed as isotropic Gaussian. 

Finally, the OOD samples are detected by calculating 

the approximate (Monter Carlo and Jensen inequality) 

log marginal likelihood of 𝑿. 

log(𝑃(𝒙)) = log ቀ෍ 𝑃(𝒙|𝒛)𝑃(𝒛)ቁ

≈ log ቀ෍ 𝑃(𝒙|𝒛)𝑄(𝒛|𝒙)ቁ

∝ − ෍‖𝒙 − 𝒚𝒊‖
ଶ

ே

௜ୀଵ

, 

(10) 

where 𝒚𝒊 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒙, 𝒛𝒊) is the 𝑖௧ℎ reconstruction of 

𝒙. 

 

 
Figure 3. Variational Auto Encoder: The input is an 

image with a size of 64 × 64 × 3, the encoder includes 

5 ResNet blocks and 2 additional FC layers to encode 

mean and covariance of 𝒁. The decoder part is formed 

by a series of 5 transposed convolutions to reconstruct 

the original image. 

 EXPERIMENT 

A. Dataset 

 We undertake the empirical analysis using three 

datasets, CNU weed dataset served as the in – 

distribution dataset, while CIFAR10 and Caltech were 

considered as the OOD datasets. 

 CNU weed dataset: the CNU weed dataset 

[18] comprises of images from 21 categories 

of weeds growing up in Korea. Those 

samples were collected by high-resolution 

cameras in various scenarios. The dataset 

used in this study had already been manually 

preprocessed by experts, where the weeds 

(or part of weeds: leaf, flower, branch, bud) 

were cropped from the noisy background and 

centered in the cropped images. After 

cropping, the number of samples per 

category is highly imbalance, when the 

largest amount is 11%, and the smallest 

amount is 3% out of 210k images. We used 

the CNU weeds dataset in this study because 

it is a real word large-scale dataset, not only 

diverse in pieces but also diverse in family. 

The dataset has been labeled carefully, and 

the amount of data has been statistically 

organized. Besides, this dataset has also been 

successfully used for plenty of tasks [18, 19]. 

 CIFAR10 dataset
1
: The CIFAR10 dataset 

consists of 60K color images with a size of 

32 × 32 belonging to 10 classes. There are 

two main categories of the label, vehicle 

(airplane, automobile, ship, truck), and animal 

(bird, cat, deer, dog, frog, horse). The 

dataset is suitable to serve as the OOD 

dataset since there not exists any class 

related to plant category. In this study, we 

used 10K images in the testing dataset to 

evaluate our framework. 

  Caltech dataset
2
: The Caltech dataset 

contains around 9.2k color images in total; 

the original size of each image is 300 × 200. It 

is a diverse dataset when there are 101 

categories. The number of images in each 

category is not equal, which varied from 40 to 

800 images per class, but most categories 

have around 50 images. Although there are 

some classes related to the category of 

plants, they are completely different from 

samples in the CNU weeds dataset. In this 

work, all images were used to evaluate the 

OOD detection models. 

 

B. Evaluation metrics 

1
. Learning Multiple Layers of Features from Tiny Images, Alex 

Krizhevsky, 2009. 
2
. L. Fei-Fei, R. Fergus and P. Perona. One-Shot learning of object 

categories. IEEE Trans. Pattern Recognition and Machine 

Intelligence. In press. 
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 Threshold-based detection: the purpose of 

constructing the above detection methods is that 

finally, an OOD sample can be rejected by a 

threshold, where the threshold value varied by 

criterion required in a particular method. Details 

are given in equation 11 and Table 1. 

Where the OOD sample will be recognized If its 

value 𝑞(𝒙) is smaller than a threshold 𝛿௤, note that 

𝛿௤ is dependent on the detection method 𝑞. Tables 

1 summarizes the criterion 𝑞  of each method 

represented in this study. 

Table 1. Summary of detection criterions 
 

𝑂𝑂𝐷(𝒙) = ቊ
1                  𝑖𝑓 𝑞(𝒙) ≤ 𝛿௤,

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(11)

1) 

Method Criterion Formula 

Softmax 

class 

probability 

Softmax 

class 

probability 

𝑞(𝒙)

= max
ୡ

𝑃(𝑌෠

= 𝑐|𝑿 = 𝒙) 

Temperatur

e scaling 

Softmax 

class 

probability 

with 

temperature 

scaling 𝑇 

𝑞(𝒙)

= max
ୡ

𝑃்(𝑌෠

= 𝑐|𝑿 = 𝒙) 

Label 

smoothing  

Softmax 

class 

probability 

trained with 

"soft" label 

𝛼 

𝑞(𝒙)

= max
ୡ

𝑃ఈ(𝑌෠

= 𝑐|𝑿 = 𝒙) 

Gaussian 
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C. Experimental results 

First of all, we trained a classification model on the 

CNU weeds dataset, the model used here was 

ResNes18 with the default configuration [8], and being 

pre-trained on ImageNet dataset. We trained the 

network for 200 epochs, the batch size was set to 64, 

the initial learning rate was 0.01 and decreased haft 

after 40 epochs to ensure the convergence of network, 

and the Adam optimizer was used to minimize the 

cross-entropy loss. In this study, we set the 

resolution of an image to 64 × 64 despite the fact that 

the image sizes varied by different datasets. We note 

that the OOD detection methods presented in this 

study do not require OOD samples for training. The 

training process was completely blind to the OOD 

dataset. Which is the practical scenario when the 

number of OOD samples is infinite, and ones normally 

do not own the sampling model. After training 200 

epochs, the best parameters on the validation set will 

be used to evaluate the test set, where the portion of 

training, validation, and test dataset was 60% - 20% - 

20%, respectively. The classification accuracy on the 

test set was  99.22%.  We showed that even though 

the model got high accuracy in the classification task, 

vanilla soft max could not detect OOD samples. 

Regarding the label smoothing approach, the same 

experimental scenario was used except for that "hard" 

labels were replaced by "soft" labels with 𝛼 = 0.9. The 

classification accuracy on the test set was  99.44% 

when training with label smoothing techniques. Not 

only achieving higher classification accuracy, but the 

model trained with label smoothing could also avoid 

overconfidence. Figure 5 shows reliability diagrams 

[15] and histogram of softmax probability scores, 

which illustrates that model trained with "soft" label 

alleviated miscalibrated.  

 
Figure 5. Reliability diagrams and histogram of 

softmax probabilities on CNU weeds, CIFAR10, 

Caltech dataset of the model trained with vanilla 

cross-entropy loss and model trained with label 

smoothing – cross-entropy loss. The gaps between 

confidence and probability on each column of the 

model trained without label smoothing are larger than 

that of the model trained without label smoothing, 

which tells that the model in the right is overconfident. 

 

In the temperature scaling approach, we used the 

pre-trained model with vanilla cross-entropy as 

stated above and extract the logits layer (right before 

the softmax layer) to calculate new probabilities with 

Smart Media Journal / Vol.9, No.3 / ISSN:2287-1322 2020년 09월 스마트미디어저널               85



temperature scaling value T, as given in Equation 2. 

Figure 6 shows the histograms of softmax class 

probability when varying some values of T. when 

𝑇 < 1, the histograms are spread to value 1, make the 

model predict all of the samples in 3 datasets 

approximately 100%. While 𝑇 > 1, the OOD datasets 

tend to reach zero confidence faster than in – 

distribution, which suggested that a threshold could be 

used to distinguish OOD samples from in – 

distribution samples. 

  
Figure 6. Histogram of softmax probabilities with 

varied values of temperature scaling factor. 

 

In Gaussian discrimination analysis, we extracted 

features at the last layer of the feature extraction part 

and trained a linear classifier with Gaussian 

assumption for the class likelihood probability. The 

extracted feature vectors had a size of 512, which was 

the layer from trained ResNet before being fed 

through a series of FC layers to do classification. The 

Mahalanobis distance was then used as a confidence 

score to decide a threshold discriminating OOD and 

in-distribution dataset; the formula is given in 

equation 5. We experimented with feature vectors 

driven from the model trained with and without label 

smoothing.  In the case of label smoothing, Figure 7 

shows that the CNU weeds dataset has relatively low 

Mahalabonis distance, while samples in the OOD 

datasets are far away from the centroids. Otherwise, 

the classifier trained with feature vectors output from 

ResNet without label smoothing was incapable of 

rejecting OOD samples by Mahalobonis distance. 

 
Figure 7. Histogram of Hahalonobis distances 

measured over CNU weeds, CIFAR10 and Caltech 

dataset in cases of with and without label smoothing. 

 

Those above methods utilized the pre-trained model 

on an in-distribution dataset and manipulated the class 

probability to come up with a rejection criterion. 

Otherwise, VAE is a network that estimated the 

marginal likelihood of the in – distribution dataset 

regardless of labels. In particular, we trained a VAE 

that consisted of an encoder to decompose an input 

image into latent vector and a decoder to reconstruct 

the input image. The encoder was the training from 

scratch - ResNet18 with the addition of 2 FC layers 

for encoding mean and covariance of distribution of 

corresponding latent vector. We set the dimension of 

latent vectors to 256. The decoder network involved 5 

consecutive decoder blocks; each block had 1 

transposed convolutional layer followed by 

LeakyReLu activation function and batch normalization. 

The last layer of the decoder network is the sigmoid 

function used to reconstruct the input image. We 

trained the network for 100 epochs with Adam 

optimizer, batch size of 128, and initial learning of 

0.001. To distinguish OOD samples from 

in-distribution data, we calculated negative log 

marginal likelihood by equation 10. The histograms of 

negative log marginal likelihood are illustrated in 

Figure 8, where the negative log marginal likelihood 

estimated from CNU weeds dataset was closed to zero, 

while that of CIFAR10 and CalTech varies in a large 

range far from zero. 

 
Figure 8. Histograms of negative log marginal 

likelihood output estimated by VAE. 

 

We used AUPR, a threshold-independent metric, to 

evaluate a method used in this study. A receiver 

operating characteristic curve (ROC) is a graphical 

plot that illustrates trades of between type I and type II 

errors, which are normally encountered in binary 

classification (e.g., anomaly detection). Additionally, 

the AUPR score is a fair metric to make comparisons 

among methods where the impact of rejection 
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thresholds is discarded. Figure 9 shows that vanilla 

softmax has the smallest AUPR value (0.89), while the 

highest case is approximately 1 achieved by the 

marginal likelihood of VAE approach. Besides, 

methods such as Mahalanobis distance, temperature 

scaling and label smoothing also attained higher AUPR 

scores than of vanilla softmax, which states their 

efficiency in removing OOD samples by using only an 

appropriate threshold. 

 

 
Figure 9. ROC curves and the corresponding AUPR 

values. 

 

We conducted all experiments on Ubuntu Server 

equipped by a GPU of 12 GB RAM, and the main used 

framework was Pytorch. Public code is available at , 

which aims to the clear of reproducing results in this 

study. In the label smoothing and temperature scaling 

method, the inference time of classification with OOD 

detection is similar to the case without OOD detection 

because there is no extra operation included at the 

testing phase. In the GDA approach, an OOD sample is 

detected by Mahalabonis distance, which costs 0.0045 

ms to calculate. Likewise, VAE requires a little extra 

time (0.005 ms) to decide if a sample belongs to 

in-distribution. Those evaluations guarantee that a 

weeds classification system equipped with an OOD 

detection mechanism still enable real-time processing 

 

 CONCLUSION 

 

This study aims to solve the problem of Out – of – 

distribution detection on the classification task by 

examining four techniques: temperature scaling, label 

smoothing, Gaussian discrimination analysis and 

variational autoencoder. Experimenting with the 

weeds classification using a deep neural network, we 

have shown that the vanilla softmax class probability 

was not confident enough to remove samples that are 

unlikely drawn from the training set. Through various 

experiments, we concluded that OOD samples could be 

rejected based on marginal likelihood (VAE approach) 

or calibrated class probability (label smoothing 

temperature scaling and GDA approach).  In 

conclusion, the OOD detection mechanism makes a 

classification model reliable with minor degradation in 

classification accuracy as well as inference time. 

 

 

REFERENCES 

[1] N. Dalal and B. Triggs, "Histograms 

of oriented gradients for human 

detection,"  2005 IEEE computer society 

conference on computer vision and pattern 

recognition, 2005 

[2] H. Bay, T. Tuytelaars and L. V. Gool, 

"Surf: Speeded up robust features,"  

European conference on computer vision, 

Berlin, 2006 

[3] T. Ahonen, A. Hadid and M. 

Pietikainen, "Face description with local 

binary patterns: Application to face 

recognition," EEE transactions on pattern 
analysis and machine intelligence, vol. 28, 

no. 12, pp. 2037-2041, 2006 

[4] K. Alex, I. Sutskever and G. E. 

Hinton, "Imagenet classification with deep 

convolutional neural networks," Advances 
in neural information processing systems, 
pp. 1097-1105, 2012 

[5] O. Russakovsky, J. Deng, S. Hao , J. 

Krause, . S. Satheesh, S. Ma, Z. Huang, A. 

Karpathy and L. Fei-Fei, "Imagenet large 

scale visual recognition challenge," 

International journal of computer vision, 
vol. 115, no. 3, pp. 211-252, 2015 

[6] N. Hoang, G. Lee, S. Kim, H. Yang, 

"Effective Hand Gesture Recognition by 

Key Frame Selection and 3D Neural 

Network," Smart Media Journal, vol. 9, no. 

1, pp. 23-29, 2020 

[7] C. Szegedy, . V. Vanhoucke, S. Ioffe, 

J. Shlens and Z. Wojna, "Rethinking the 

inception architecture for computer 

vision," Proceedings of the IEEE 
conference on computer vision and pattern 
recognition, 2016 

Smart Media Journal / Vol.9, No.3 / ISSN:2287-1322 2020년 09월 스마트미디어저널               87



[8] K. He, X. Zhang, S. Ren and J. Sun, 

"Deep residual learning for image 

recognition," Proceedings of the IEEE 
conference on computer vision and pattern 
recognition, 2016 

[9] A. Nguyen, J. Yosinski and J. Clune, 

"Deep Neural Networks are Easily Fooled: 

High Confidence Predictions for 

Unrecognizable Images," Computer Vision 
and Pattern Recognition, 2015 

[10] A. Nguyen, J. Yosinski and J. Clune, 

"Deep Neural Networks are Easily Fooled: 

High Confidence Predictions for 

Unrecognizable Images," Computer Vision 
and Pattern Recognition, 2015 

[11] D. Hendrycks and K. Gimpel, "A 

baseline for detecting misclassified and 

out-of-distribution examples in neural 

networks," International Conference on 
Learning Representations, 2017 

[12] K. Lee, K. Lee, H. Lee and J. Shin, 

"A simple unified framework for detecting 

out-of-distribution samples and 

adversarial attacks," Advances in Neural 
Information Processing Systems, pp. 

7167-7177, 2018 

[13] J. Ren, P. J. Liu, E. Fertig, J. Snoek, 

R. Poplin, M. A. DePristo, J. V. Dillon and B. 

Lakshminarayanan, "Likelihood ratios for 

out-of-distribution detection," Advances 
in Neural Information Processing Systems, 
pp. 14680-14691, 2019 

[14] K. Lee, H. Lee, K. Lee and J. Shin, 

"Training confidence-calibrated 

classifiers for detecting 

out-of-distribution samples," 

International Conference on Learning 
Representations, 2018 

[15] C. Guo, G. Pleiss, Y. Sun and K. Q. 

Weinberger, "On calibration of modern 

neural networks," Proceedings of the 34th 
International Conference on Machine 
Learning, 2017 

[16] M. Germain, K. Gregor, I. Murray 

and H. L. Larochelle, "MADE: Masked 

Autoencoder for Distribution Estimation," 

International Conference on Machine 
Learning, 2015 

[17] D. P. Kingma and M. Welling, 

"Auto-encoding variational bayes," arXiv 
preprint arXiv:1312.6114 , 2013 

[18] T. H. Vo, H. G. Yu, V. T. Dang and Y. 

J. Kim, "Late fusion of multimodal deep 

neural networks for weeds classification," 

Computers and Electronics in Agriculture, 
vol. 175, pp. 105506, 2020 

[19] T. H. Vo, G. H. Yu, H. T. Nguyen, J. 

H. Lee, T. V. Dang, J. Y. Kim,"Analyze 

weeds classification with visual 

explanation based on Convolutional Neural 

Networks," Smart Media Journal, vol. 8, no. 

3, pp. 31-40, 2019 
 

  

88             2020년 09월 스마트미디어저널 Smart Media Journal / Vol.9, No.3 / ISSN:2287-1322



 Authors    
Thanh-Vu Dang 

 

He is a student of M.S. degree in 

Department of Electronics 

Engineering at Chonnam 

National University. He 

received his B.S. degree in 

Mathematics and Computer Science at Vietnam 

National University-University of Science, Vietnam 

in 2018. His research interests are Digital Signal 

Processing, Image Processing, Speech Signal 

Processing, Machine Learning. 

 

Hoang-Trong Vo 

 

He is a student of Ph.D. degree 

in Department of Electronics 

Engineering from Chonnam 

National University. He 

received his M.S. degree in 

Electronics Engineering from Chonnam National 

University, Korea in 2019. His research interests 

are Object Classification, Neural Network, Deep 

Learning. 

 

Gwang-Hyun Yu  

 

He is a student of Ph.D. degree 

in Department of Electronics 

Engineering at Chonnam 

National University. He 

received his M.S. degree in 

Electronics Engineering from Chonnam National 

University, Korea in 2018. His research interests 

are Digital Signal Processing, Image Processing, 

Speech Signal Processing, ML, DL. 

 

 

Ju-Hwan Lee 

 

He is a student of M.S. degree in 

Department of Electronics 

Engineering at Chonnam 

National University. He 

received his B.S. degree in 

Oceanography from Chonnam National University, 

Korea in 2019. His research interests are Digital 

Signal Processing, Image Processing, Machine 

Learning. 

 

 

Huy-Toan Nguyen 

 

He is a Postdoctoral Researcher 

in Department of Electronics 

Engineering at Chonnam 

National University. He 

received his B.S. degree in 

Engineering from Thai Nguyen University of 

Technology, Vietnam in 2012 and Ph.D. degree in 

Electronics and Computer Engineering from 

Chonnam national University in 2020. His research 

interests are Computer Vision, Wearable Device, 

Microprocessor Based Systems, ML, DL. 

 

 

Jin-Young Kim 

 

He is a professor in Department 

of Electronics Engineering at 

Chonnam National University, 

Korea. He received his B.S., 

M.S. and Ph.D. degree in 

Electronics Engineering from Seoul National 

University, Korea in 1986, 1988 and 1994, 

respectively. His research interests are Digital 

Signal Processing, Image Processing, Speech Signal 

Processing, ML, DL. 

Smart Media Journal / Vol.9, No.3 / ISSN:2287-1322 2020년 09월 스마트미디어저널               89




