• Title/Summary/Keyword: Smart Skin

Search Result 115, Processing Time 0.028 seconds

Design, Analysis and Test of Smart Skin structure with a round shape antenna (원형 안테나 구조를 갖는 스마트 스킨 구조 설계, 해석 및 시험)

  • Joe, June-Sung;Goo, Nam-Seo;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.46-50
    • /
    • 2005
  • Smart skin, a multi-layer structure of composed of a round shape antenna, was designed and fabricated. Tests and analyses was conducted to study its behavior under compressive loads. It was confirmed that the designed smart skin failed due to premature buckling before compression failure. Numerical prediction of structural behavior of smart skin by MSC.NASTRAN agreed well with experimental data.

  • PDF

Design and fabrication of Smart Skin Antenna for Phased Array Applications (위상배열 응용을 위한 스마트 스킨 안테나 설계 및 제작)

  • Son, Seong-Ho;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.25-30
    • /
    • 2007
  • This paper describes the basic design and fabrication of smart skin antenna for phased array applications. The smart skin phased array antenna, of which radiation pattern can be electrically steerable without mechanical rotation, has to meet the both mechanical and electrical performance. The smart skin antenna is a honeycomb sandwich structure to enhance the mechanical performance such as strength, weight and so on. The example of smart skin antenna integrated with radome is designed with the resonant frequency of 5 GHz, circular polarization, 2 by 2 subarray, and a coaxial probe-fed excitation. In addition, the performance of raw microstrip patch antenna uncovered radome is investigate. The fabricated smart skin antenna shows a reasonable performance with gain of 12.2 dBi and frequency bandwidth of 6.4 %.

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Development and Evaluation of Non-Hydrous Skin Analogue Liquid Crystal using Thermo-Sensitivity Smart Sensor

  • Yoo, Kwang-Ho;Hong, Jae-Hwa;Eun, So-Hee;Jeong, Tae-Hwa;Jeong, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.367-374
    • /
    • 2014
  • In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of $35^{\circ}C$. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by ${\alpha}$-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below $35^{\circ}C$ of skin temperature, but its effects has increased more than 30% above $35^{\circ}C$.

Design, Fabrication and Test of Smart Skin Sandwich Specimen (스마트 스킨 샌드위치 시편의 설계, 제작 및 시험 평가)

  • 김용범;김영성;박훈철;윤광준;이재화
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2002
  • Smart skin, a multi-layer structure of composed or different materials, was designed and fabricated. Tests and analyses are conducted to study the characteristics of its behavior under compression and bending loads. The designed smart skin failed due to premature buckling before compression failure. It was confirmed that shear moduli of honeycomb core affect structural stability of smart skin. A new test method and device were designed fur better measurement of shear moduli of honeycomb core. Numerical prediction of structural behavior of smart skin by NASTRAN agreed well with experimental data.

A Study on the Development of the Lifting Palette in the Smart Skin System of Apartment Housing (공동주택 스마트 외피 시스템의 양중 팔레트 개발에 관한 연구)

  • Lee, Hyun-Jeong;Park, Moon-Sun;Ahn, Yong-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.145-146
    • /
    • 2018
  • This study was performed to develop the lifting pallets for the application of smart skin system when remodeling the balcony of apartment house. For this purpose, the smart skin system based on IoT, combining window, BIPV, ESS, air purifier applied in this study was examined. The study developed and presented a foldable double pallet considering the load (about 2Ton) and specification (width 7m × height 2.6m × width 1.3m) of the smart skin system. In future research, it is necessary to verify the application of the foldable pallet in this study.

  • PDF

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Illumination Invariant Face Tracking on Smart Phones using Skin Locus based CAMSHIFT

  • Bui, Hoang Nam;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.9-19
    • /
    • 2013
  • This paper gives a review on three illumination issues of face tracking on smart phones: dark scenes, sudden lighting change and backlit effect. First, we propose a fast and robust face tracking method utilizing continuous adaptive mean shift algorithm (CAMSHIFT) and CbCr skin locus. Initially, the skin locus obtained from training video data. After that, a modified CAMSHIFT version based on the skin locus is accordingly provided. Second, we suggest an enhancement method to increase the chance of detecting faces, an important initialization step for face tracking, under dark illumination. The proposed method works comparably with traditional CAMSHIFT or particle filter, and outperforms these methods when dealing with our public video data with the three illumination issues mentioned above.

  • PDF

Characteristics of smart skin under buckling load (스마트 스킨 구조물의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.790-793
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by assuming that the compression load is sustained by only face material. In the experiment, if buckling occurs obviously then it follows the theoretical result well. In the process of buckling, the load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

A Study on the Relationship between Ultraviolet Rays and Skin Color Using a Photoplethysmography Sensor

  • So-Yae Hur;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.363-369
    • /
    • 2023
  • In this study, to check the function of managing the severity of ultraviolet rays with a smart watch, a popular health care IT device, It was tested whether measuring heart rate using a PPG(Photoplethysmography) sensor representatively used in a smart watch could tell skin changes caused by ultraviolet rays. Through this experiment, we examined the possibility that the skin color tanned by ultraviolet rays can be determined only by the heart rate measurement function of the PPG sensor. In addition, the possibility of expanding the heart rate measurement function of the PPG sensor to the use of skin condition management was considered. we used an Arduino-based reflective PPG sensor to measure changes in heart rate by selecting body sites with high and low UV rays exposure. A significant value was derived through tests considering factors such as gender, UV exposure, and age. As a result, the study identified the possibility of adding ultraviolet rays and skincare items to future smart watch healthcare items and the possibility of expanding skin measurement methods. It is also possible to suggest the direction of future research.