• Title/Summary/Keyword: Smart Monitoring

Search Result 1,902, Processing Time 0.028 seconds

A Development of the Prototypes of Smart Sportswear for Trekking and Jogging (트레킹 및 조깅을 위한 스마트 스포츠웨어의 프로토타입 개발)

  • Kim Young-Jun;Kim Hoo-Sung;Seo Jung-Hoon;Lee Sun-Young;Lee Joo-Hyeon;Hwang Eun-Soo;Cho Hyun-Seung
    • Science of Emotion and Sensibility
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • The purpose of this study is to develop a modular model of smart clothing which can integrate various digital devices in clothing, maintaining the inherent attribute of clothing. For achieving this purpose, several technological devices for the smart clothing for listening to music, bio-monitoring, and environment monitoring were developed, through multidisciplinary cooperation. As the result, total four design prototypes of smart sportswear(trekking wear, jogging wear) for the application of entertainment and health care were suggested.

  • PDF

A Decision Support System for Smart Farming in Agrophotovoltaic Systems (영농형 태양광 시스템에서의 스마트 농업을 위한 의사결정지원시스템)

  • Youngjin Kim;Junyong So;Yeongjae On;Jaeyoon Lee;Jaeyoon Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.180-186
    • /
    • 2022
  • Agrophotovoltaic (APV) system is an integrated system producing crops as well as solar energy. Because crop production underneath Photovoltaic (PV) modules requires delicate management of crops, smart farming equipment such as real-time remote monitoring sensors (e.g., soil moisture sensors) and micro-climate monitoring sensors (e.g., thermometers and irradiance sensors) is installed in the APV system. This study aims at introducing a decision support system (DSS) for smart farming in an APV system. The proposed DSS is devised to provide a mobile application service, satellite image processing, real-time data monitoring, and performance estimation. Particularly, the real-time monitoring data is used as an input of the DSS system for performance estimation of an APV system in terms of production yields of crops and monetary benefit so that a data-driven function is implemented in the proposed system. The proposed DSS is validated with field data collected from an actual APV system at the Jeollanamdo Agricultural Research and Extension Services in South Korea. As a result, farmers and engineers enable to efficiently produce solar energy without causing harmful impact on regular crop production underneath PV modules. In addition, the proposed system will contribute to enhancement of the smart farming technology in the field of agriculture.

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring (웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.697-707
    • /
    • 2019
  • This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.

A Implementation of Smart Band and Data Monitoring System available of Measuring Skin Moisture and UV based on ICT (ICT기반의 피부 수분 및 자외선 측정이 가능한 스마트 밴드 및 데이터 모니터링 시스템 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo;You, Kang-Soo;So, Won-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.715-724
    • /
    • 2017
  • Today all kinds of smart devices are being developed with various researches on wearable devices that support smart computing on the human body. Skin diseases continue to rise including freckles, pimples, atopy, and scalp trouble due to the environmental and genetic factors, and people pay bigger medical bills to treat their skin diseases. There is thus a need to develop a smart-phone or table-based smart healthcare imaging system of high portability and diagnostic accuracy capable of analyzing and managing various skin problems related to skin care. This study proposed an integrated system combining the Smart Mi Band, a wearable device using moisture and UV sensors based on IoT, on the hardware part with the sensor information monitoring software.

Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring (구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구)

  • Kim, Eun-Jin;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.

An Explorative Study on Development Direction of a Mobile Fitness App Game Associated with Smart Fitness Wear (스마트 피트니스 웨어 연동형 모바일 피트니스 앱 게임의 개발 방향 탐색)

  • Park, Su Youn;Lee, Joo Hyeon
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1225-1235
    • /
    • 2018
  • In this study, as a part of practical and customized smart contents development planning research related to smart fitness contents associated with smart wear that can monitor physical activity, we investigated the potential needs for smart fitness contents through research. As a result, the potential needs for smart fitness contents is 'accessibility to use', 'inducement of interest', 'diverse story line' were derived at the stage of 'before exercise', 'Real - time voice coaching', 'accurate exercise posture monitoring', and 'personalized exercise prescription' were derived at the stage of 'during exercise'. At the stage of 'after exercise', 'substantial reward system', 'grading system', 'body figure change monitoring' and 'everyday life monitoring' were derived. At the stage of 'connection to the next exercise', 'triggering exercise motivation', 'high sustainability' wear derived.

Development of Skin Disease Smart Phone App. using CMOS Camera based on Hybrid RF (Hybrid RF기반 CMOS 카메라를 이용한 피부질환 모니터링 스마트폰 APP개발)

  • Lee, Minwoo;Park, Soonam;Lee, Nanhee;Lee, Junghoon;Lee, Jason;Shim, Dongha
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.30-33
    • /
    • 2015
  • In this paper, we proceeded a study on the Hybrid RF based development of the smart phone Application skin disease monitoring using CMOS camera. we proposed an image transfer technology which can use the CMOS camera and we developed the smart phone application which can be possible to use a remote monitoring for skin disease. Image transfer technology using Hybrid RF communication applied for WiFi using CMOS camera. We implemented the function which can use a remote monitoring using Wi-Fi. These suggestion can be a good example for endoscopic applications using hybrid RF based smart phone application of skin disease monitoring using CMOS camera.

Wireless Sensor Network based Remote Power Monitoring System for Anti Islanding application in Smart-Grid (스마트 그리드 내 독립전원의 단독운전 방지를 위한 무선 센서 네트워크 기반의 원격 전력 감시 시스템)

  • Kim, Kee-Min;Lee, Kyung-Jung;Moon, Chan-Woo;Ahn, Hyun-Sik;Jeong, Gu-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.57-62
    • /
    • 2010
  • Renewable energy and smart grid become the focus of attention of industry. The smart grid is an intelligent system which maximizes the efficiency of energy and it needs to monitor the amount of power generation and power consumption continuously. Remote Monitoring System(RMS) is very useful for monitoring the power generation and consumption, but mostly they are implemented on the wire communication. In this paper, we propose a wireless sensor network based remote power monitoring system. And as an application, a new anti-islanding method with the proposed RMS is presented. An experimental micro grid system is implemented to verify the proposed RMS and anti-islanding method.

Active monitoring of pipeline tapered thread connection based on time reversal using piezoceramic transducers

  • Hong, Xiaobin;Song, Gangbing;Ruan, Jiaobiao;Zhang, Zhimin;Wu, Sidong;Liu, Guixiong
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.643-662
    • /
    • 2016
  • The monitoring of structural integrity of pipeline tapered thread connections is of great significance in terms of safe operation in the industry. In order to detect effectively the loosening degree of tapered thread connection, an active sensing method using piezoceramic transducers was developed based on time reversal technique in this paper. As the piezoeramic transducers can be either as actuators or sensors to generate or detect stress waves, the energy transmission for tapered thread connection was analyzed. Subsequently, the detection principle for tapered thread connection based on time reversal was introduced. Finally, the inherent relationship between the contact area and tightness degree of tapered thread connection for the pipe structural model was investigated. Seven different contact area scenarios were tested. Each scenario was created by loosening connectors ranging from 3 turns to 4.5 turns in the right tapered threads when the contact area in the left tapered threads were 4.5 turns. The experiments were separately conducted with a highly noisy environment and various excitation signal amplitudes. The results show the focused peaks based on time reversal have the monotonously rising trend with the increase of the contact areas of tapered threads within an acceptable monitoring resolution for metal pipes. Compared with the energy method, the proposed time reversal based method to monitor tapered threads loosening demonstrates to be more robust in rejecting noise in Structural Health Monitoring (SHM) applications.

A Study of Dementia Patient Care Monitoring System Based on Indoor Location Using Bluetooth Beacon (블루투스 비콘을 활용한 실내위치기반 치매환자 모니터링 시스템에 관한 연구)

  • Kwon, Dae-Won
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.217-225
    • /
    • 2016
  • In this study, a dementia patient care monitoring system is suggested that uses a wearable type bluetooth beacon to prevent them from going missing. This system shows whether the patients stay within the manageable area and sends a warning message to their monitoring managers' or guardians' smart devices when they leave it. The feature of the system is that it provides the service based on indoor location that makes the beacon worn by dementia patients continuously transmit their location information to the managing server through the smart terminal installed indoors or in hospitals and that enables the monitoring managers or the guardians to receive messages sent from the server that tell the patients' whereabouts through their smart devices. The system suggested in this paper is believed to be a system that effectively contributes to the prevention of the dementia patients' going astray from the hospitals and facilities where they are taking care.