• Title/Summary/Keyword: Smart Key

Search Result 1,234, Processing Time 0.026 seconds

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao;Yu, Yixin;Zeng, Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1494-1503
    • /
    • 2018
  • This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

Smart card based three party key exchange protocol without server's aid (서버의 개입이 없는 스마트카드 기반의 3자간 키 교환 프로토콜)

  • Kim, Yong-Hun;Youn, Taek-Young;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.11-20
    • /
    • 2008
  • Three-party key exchange protocol is a cryptographic protocol which permits two clients share a common session key using different passwords by the help of a trusted server. In a three-party key exchange protocol, an user remember only one password which shared with a trusted server for establish a common key with another user. The trusted server should participate in an execution of the protocol between two clients. This impose heavy burden on the server when many users want to establish a session key using the protocol. In this paper, we propose a three-party key exchange protocol based on a smart card which reduce the computational complexity and communication overhead for the trusted server. In our protocol, the server does not participate in an key exchange procedure between two clients.

Threats Analysis and Mobile Key Recovery for Internet of Things (IoT 환경에서의 보안위협 분석과 모바일 키 복구)

  • Lee, Yunjung;Park, Yongjoon;Kim, Chul Soo;Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.918-923
    • /
    • 2016
  • IoT should be considered security risk environments such as various platforms and services including smart devices that can be mounted on household electric appliances, healthcare, car, and heterogeneous networks that are connected to the Internet, cloud services and mobile Apps.. In this paper, we provide analysis of new security threats, caused by open-platform of IoT and sensors via the Internet. Also, we present the key recovery mechanism that is applied to IoT. It results to have compatibility with given research, reduces network overhead, and performs key recovery without depending on key escrow agencies or authorized party.

A Survey on Face-based Cryptographic Key Generation

  • Dang, Thao;Choi, Deokjai
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2020
  • Derivation cryptographic keys from human biometrics opens a new promising research area when it can be used efficiently for not only verification or recognition tasks, but also symmetric-key based applications. Among existing biometric traits, face is considered as the most popular biometrics since facial features are informative and discriminative. In this paper, we present a comprehensive survey of Face-based key generation (FKGS). First, we summarize the trend of FKGS researches and sum up the methods which play important roles in the proposed key generation systems. Then we present the evaluation and the general performance analysis; from that, we give a discussion about the advantages and disadvantages of surveyed studies to clarify the fundamental requirements and the main challenges when implementing FKGS in practice. Finally, an outlook on future prospects is given.

A Study on the Contents Security Management Model for Multi-platform Users

  • Joo, Hansol;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.10-14
    • /
    • 2021
  • Today people adopt various contents from their mobile devices which lead to numerous platforms. As technology of 5G, IOT, and smart phone develops, the number of people who create, edit, collect, and share their own videos, photos, and articles continues to increase. As more contents are shared online, the numbers of data being stolen continue to increase too. To prevent these cases, an authentication method is needed to encrypt the content and prove it as its own content. In the report, we propose a few methods to secure various misused content with secondary security. A unique private key is designed when people create new contents through sending photos or videos to platforms. The primary security is to encrypt the "Private Key" with a public key algorithm, making its data-specific "Timeset" that doesn't allow third-party users to enter. For the secondary security, we propose to use Message Authentication Codes(MACs) to certify that we have produced the content.

A Study on the Development of Smart Water Grid Key Performance Index for the Implementation of Smart City (스마트시티 구현을 위한 스마트워터그리드 성과평가지표 개발에 관한 연구)

  • Jung, Seung Kwon;Jun, Kye Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2020
  • Despite the global promotion of Smart City, there is currently no standard for smart water grid development, and it is not possible to judge the success of Smart City. There is a clear need to establish the requirements and goals of the Smart Water Grid and accurately diagnose and improve the limitations and problems of the existing Smart Water Grid. For this purpose, it is very important to use the index suitable for Smart Water Grid goals. In this study, we developed Smart Water Grid Index which can be used to evaluate the target measurement and attainment of Smart Water Grid and can be utilized based on the implementation plan for Smart Water Grid in the future. Through the development of the Smart Water Grid Key Performance Index (SWG KPI), we will lay the groundwork for continuous capacity evaluation of the Smart Water Grid and improve the reliability of the Index. It is expected that it will be possible to prepare and evaluate a Challenge Evaluation Card for the planned Smart Water Grid by providing an evaluation table for grid competency evaluation.

Analysis of Smart City Core Technology Using Quantitative Indicators of Patentes (특허의 정량적 지표를 활용한 스마트시티 주요기술 분석)

  • Kwon, Won Jin;Lee, Jung Hoon;Lee, Nam Jung
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.4
    • /
    • pp.79-101
    • /
    • 2021
  • The purpose of this research is to define detailed technologies of smart city based on excellent patents through patent analysis related to major technologies of smart city, and to use quantitative indicators to classify relatively high technology importance and identify related technologies. To achieve the purpose of the study, patent collection is conducted by reflecting literature research and expert opinions based on information related to the smart city Internet of Things/Internet of Things communication core technology. Also, DEA were used to determine the relatively high technology. The inputs and outputs used in the study used quantitative indicators to determine technical value and made up of impact assessment, performance assessment and value assessment. As a result of the analysis, various technology groups were classified into smart city-related platform technologies, information sharing technologies, and network-related technologies, and based on the results of this research, it is expected that it will be able to apply technology patents related to smart cities to research and development strategies through key detailed technologies by major technologies of Smart City.

Secure SLA Management Using Smart Contracts for SDN-Enabled WSN

  • Emre Karakoc;Celal Ceken
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3003-3029
    • /
    • 2023
  • The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, including e-health, smart homes, and precision agriculture. However, this proliferation of services demands effective SLAs between customers and service providers, especially for critical services. Difficulties arise in maintaining the integrity of such agreements, especially in vulnerable wireless environments. This study proposes a novel SLA management model that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts in a straightforward manner. The proposed model ensures the persistence of network metrics and SLA provisions through smart contracts, eliminating the need for intermediaries to audit payment and compensation procedures. The reliability and verifiability of the data prevents doubts from the contracting parties. To meet the high-performance requirements of the blockchain in the proposed model, low-cost algorithms have been developed for implementing blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. Furthermore, a cryptographic signature control code is generated by wireless nodes using the in-memory private key and the dynamic random key from the smart contract at runtime to prevent tampering with data transmitted over the network. This control code enables the verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime is ensured by the flexible and high-performance infrastructure of the SDN architecture.

Smart grid and nuclear power plant security by integrating cryptographic hardware chip

  • Kumar, Niraj;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3327-3334
    • /
    • 2021
  • Present electric grids are advanced to integrate smart grids, distributed resources, high-speed sensing and control, and other advanced metering technologies. Cybersecurity is one of the challenges of the smart grid and nuclear plant digital system. It affects the advanced metering infrastructure (AMI), for grid data communication and controls the information in real-time. The research article is emphasized solving the nuclear and smart grid hardware security issues with the integration of field programmable gate array (FPGA), and implementing the latest Time Authenticated Cryptographic Identity Transmission (TACIT) cryptographic algorithm in the chip. The cryptographic-based encryption and decryption approach can be used for a smart grid distribution system embedding with FPGA hardware. The chip design is carried in Xilinx ISE 14.7 and synthesized on Virtex-5 FPGA hardware. The state of the art of work is that the algorithm is implemented on FPGA hardware that provides the scalable design with different key sizes, and its integration enhances the grid hardware security and switching. It has been reported by similar state-of-the-art approaches, that the algorithm was limited in software, not implemented in a hardware chip. The main finding of the research work is that the design predicts the utilization of hardware parameters such as slices, LUTs, flip-flops, memory, input/output blocks, and timing information for Virtex-5 FPGA synthesis before the chip fabrication. The information is extracted for 8-bit to 128-bit key and grid data with initial parameters. TACIT security chip supports 400 MHz frequency for 128-bit key. The research work is an effort to provide the solution for the industries working towards embedded hardware security for the smart grid, power plants, and nuclear applications.