
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, Nov. 2023 3003
Copyright ⓒ 2023 KSII

http://doi.org/10.3837/tiis.2023.11.006 ISSN : 1976-7277

Secure SLA Management Using Smart
Contracts for SDN-Enabled WSN

Emre Karakoç1*, and Celal Çeken2

1 Faculty of Computer and Information Sciences, Computer Engineering Department, Sakarya University,
Sakarya, Postal Code: 54187, Turkey

[e-mail: emre.karakoc3@ogr.sakarya.edu.tr]
2 Artificial Intelligence Systems Research and Application Centre, Sakarya University

Sakarya, Postal Code: 54187, Turkey
[e-mail: celalceken@sakarya.edu.tr]

*Corresponding author: Emre Karakoç

Received June 6, 2023; revised August 25, 2023; accepted October 20, 2023;
published November 30, 2023

Abstract

The rapid evolution of the IoT has paved the way for new opportunities in smart city domains,
including e-health, smart homes, and precision agriculture. However, this proliferation of
services demands effective SLAs between customers and service providers, especially for
critical services. Difficulties arise in maintaining the integrity of such agreements, especially
in vulnerable wireless environments. This study proposes a novel SLA management model
that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts
in a straightforward manner. The proposed model ensures the persistence of network metrics
and SLA provisions through smart contracts, eliminating the need for intermediaries to audit
payment and compensation procedures. The reliability and verifiability of the data prevents
doubts from the contracting parties. To meet the high-performance requirements of the
blockchain in the proposed model, low-cost algorithms have been developed for implementing
blockchain technology in wireless sensor networks with low-energy and low-capacity nodes.
Furthermore, a cryptographic signature control code is generated by wireless nodes using the
in-memory private key and the dynamic random key from the smart contract at runtime to
prevent tampering with data transmitted over the network. This control code enables the
verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime
is ensured by the flexible and high-performance infrastructure of the SDN architecture.

Keywords: Blockchain, IoT, SDN, Smart Contract, SLA, WSN.

3004 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

1. Introduction

Internet of Things (IoT) offers new opportunities for businesses and individuals in smart cities,
enabling technological advancements in areas such as building energy management systems,
smart factories, precision agriculture, e-health systems, and smart homes [1]. Some of these
services are highly sensitive and critical to the customers' benefits. Potential problems that
may arise during the service period can be predicted in advance, and appropriate actions can
be taken to address them and inform the customer accordingly. These processes are regulated
through contracts known as Service Level Agreements (SLAs) in the field of informatics. An
SLA is an official agreement established through mutual understanding between the customer
and the service provider. It can be independently defined and implemented in any customer
case by utilizing IT network infrastructure. The SLA outlines the customer's expectations and
their obligations towards the service provider. It also plays a crucial role in identifying key
performance criteria for the service, such as network availability, jitter, bandwidth, latency,
error rate, packet loss, etc. [2]. Additionally, the SLA can establish the necessary procedures
for monitoring and reporting issues, specify time limits, and define appropriate penalties in
case of violations [3]. It is of utmost importance that these matters are documented in SLAs
so that, in the event of an SLA breach (e.g., failure to meet performance criteria), the customer
can claim damages from the service provider as compensation. However, even if the terms of
compensation are clearly stated in the SLA, the process itself can be uncertain due to potential
dishonest actions by the involved parties [4]. When a customer submits a complaint regarding
an SLA breach, they may need to provide supporting evidence (data) to validate their claim.
Conversely, the service provider may be required to furnish evidence demonstrating their
compliance with the SLA. Moreover, in case of disagreement, the customer may choose not
to pay the previously agreed-upon amount for the purchased service, or the service provider
may decide not to provide the defined compensation.

The wireless network environment, on the other hand, can be more vulnerable to tampering
and more challenging to manage, especially when it comes to sensitive data transmission over
the air compared to the wired network environment. For example, in certain smart city
applications that utilize a Wireless Sensor Network (WSN) with a dynamic infrastructure, real-
time data transfer may be requested by the customer. However, there can be unexpected issues
such as energy depletion during runtime or network manipulation by attackers, given that the
wireless network nodes are low-energy devices. As a result, users of the wireless network
environment may require a network that meets their own standards or take responsibility for
their own security measures. To meet these standards, the service provider managing the
network infrastructure may need to regularly monitor network changes, handle all network
layers simultaneously, and ensure traffic load balancing when new clients connect to the nodes
[5]. However, customers may also request proof of the service reliability from the service
provider.
Considering the potential risks in the wireless environment, it appears that there may be more

conflicts when using an SLA in the wireless network compared to the wired environment. As
conflicts increase, both the service provider and the customer may have to undergo a more
costly and bureaucratic process. They may need to rely on a Trusted Third Party (TTP)
company, such as a bank or financial service, to facilitate the required payments. Therefore,
there is a need for a cost-effective and straightforward solution that ensures accurate payment
from both parties. We believe that blockchain technology, based on the principles of
immutability and smart contracts (SC), can help address these issues by providing a reliable
payment system and secure storage. In this regard, we propose a smart contract-Based Model

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3005

that safeguards the Wireless Network's Quality of Service (QoS) metrics used to express SLAs
against tampering, utilizing a blockchain architecture like Ethereum, which offers a flexible
development infrastructure. This eliminates the need for an intermediary institution to ensure
service fees and compensation payments. Additionally, service providers will be able to
demonstrate their reliability through the smart contract. We believe that this architecture holds
promising potential.
In this study, we have resolved the disputes that may arise between the parties during the

execution of the SLA specific to the WSN environment and the situations that may cause loss
of trust with a new model based on smart contracts. In this context, we propose a model that
enables customers to monitor the promised network metrics and facilitates the automatic
execution of the SLA payment and compensation process between the customer and the
service provider without the need for a third party. We have ensured the immutability of SLA
agreement rules by storing them in the blockchain network via smart contract in the model we
propose. We also evaluated the possibility of end-to-end tampering of data between WSN and
smart contract. In this context, we created a hash value with signature quality of the data
transmitted from WSN nodes to the smart contract by using the private key and dynamic key
binary keys generated on the smart contract. Thus, we have eliminated possible malicious
attacks by passing the data transmitted to the smart contract and the signature value of the data
through a control function. As a result, all SLA outputs are considered reliable for both the
customer and the service provider according to proposed model. The Ethereum infrastructure
and Solidity language are utilized for implementing the smart contracts. Contributions of this
study can be listed as follows:

• Although various models utilizing smart contracts have recently been proposed in the

literature, to the best knowledge of the authors, the proposed model is the first study to
demonstrate the feasibility of SLA management using smart contracts in WSN architecture.
Blockchain is a hardware-intensive technology. Therefore, similar studies that employ
smart contract-based SLA management in IoT have utilized single board computers or
edge devices, as implementing this infrastructure on low-energy and low-performance
wireless nodes can be challenging. In contrast to other studies, our proposed model
developed a blockchain infrastructure specifically applicable to wireless nodes.

• We have developed a smart contract-based model that enables control over network
metrics in low-energy and performance wireless nodes. This flexible network structure
formed by wireless nodes is expected to find applications in various areas of smart city
applications, offering a fresh perspective.

• While smart contracts provide immutability and impartiality to applications, concerns
about third-party insecurity arise when data is sent to the smart contract. The proposed
model overcomes this issue by implementing a dual-sided control mechanism, ensuring
verifiability of the data and confirming the amount of data sent to the contract. This
safeguards both the service provider and the customer against potential malicious incidents.

• In this study, we have proposed a global ecosystem that encompasses all stages, from
production to sales and from sales to customers, including the supply chain of Wireless
Sensor Nodes. By incorporating the supply chain into the model, we establish confidence
in the authenticity of the devices throughout the entire lifecycle, from the production phase
to customer usage.

3006 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

The remainder of the paper is organized as follows: Section 2 presents related studies found
in the literature. Section 3 explains the underlying technologies and subsystems of the
proposed architecture. The overall properties and design stages of the proposed model, along
with related algorithms, are provided in Section 4. In Section 5, an example scenario of a smart
building incorporating the proposed model is implemented, followed by performance
evaluation. With the case study, the aim of this article was to experimentally demonstrate the
feasibility of the proposed model and to emphasize the solution we produced against customer
requests in the face of a possible scenario in the real world. The paper concludes with the final
section, which offers concluding remarks and suggestions for further studies.

2. Related Works
There are several studies in the literature suggesting SLA management using blockchain and
smart contracts. In a couple of studies [3][6], a model powered by smart contracts was
proposed to automate the SLA monitoring process on Pop-Es (Point of Presence-ES / RNP),
which offers various network maintenance, management, planning, and development services.
The smart contract they developed was hidden on the Ropsten network, a public Ethereum
Test Network. Additionally, they stored files with high storage costs from the blockchain
network in a decentralized file system (IPFS - Interplanetary File System) within their
proposed system. Another study developed an Ethereum-based smart contract that automates
the potential compensation process between the customer and the service provider [7]. Their
proposed model required both the customer and the service provider to agree to the terms of
the SLA included in the smart contract from the outset and deploy it onto the blockchain
network. In this study, the authors simulated SLA conditions by using response times based
on a php site hosted on a test web server.

A different framework for managing smart contracts and dynamic SLAs in a distributed
manner involves the management of data collection and verification, as well as changes in
network quality and the service payment system [8]. The authors utilized two different
networks: off-chain and blockchain. The former was employed for computationally intensive
tasks related to SLA management, while the latter was used for executing smart contracts.
Building upon previous work [9], they introduced a decision-making structure by
incorporating Oracle DB into the SLA application. In another study, the authors proposed
using smart contracts instead of a secure intermediary platform for managing SLAs related to
cloud computing communication standards [10]. They also addressed the challenge of
verifying the correctness of data before recording potential violations in the blockchain. To
address this, they proposed a witness model based on game theory, wherein witnesses were
committed to receiving a specific fee as an incentive to ensure their credibility. The results of
another study [11] indicated that centrally managed smart contracts were susceptible to
manipulation, thereby compromising accessibility and data integrity. In response, the authors
designed a decentralized approach where smart contracts could be grouped, and common
variables or data could interact based on collectively determined shared values. They proposed
a consensus mechanism utilizing asynchronous voting to achieve consensus among multiple
members, and when a sufficient number of votes were received, consensus was reached. This
approach aimed to ensure the reliability of data transmission between the client and the smart
contract. Lastly, a similar study argued that managing the compensation process of Service
Level Agreements (SLAs) is a complex and bureaucratic task [12]. They emphasized the
expenditure of capital and effort in resolving breaches that occur within launched SLAs, with
transactions typically conducted manually. As a solution, they employed smart contracts for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3007

managing SLA violations due to their reliable structure that minimizes the need for third-party
intervention.

Blockchain and smart contracts have been utilized in several studies for network slicing and
channel allocation management. In [13], the authors assert that the inherent features of
blockchain can support various processes in the top-tier level of 5G network slicing
management. They explain how the system can serve as a manageable platform for virtualized
network functions in 5G using blockchain and smart contracts. Similarly, another study
proposed a novel network slicing technology called NSB chain, which leverages blockchain
to meet the requirements of new business models without relying on traditional network
sharing agreements [14]. In this model, smart contracts are employed to automate and scale
the allocation of network resources among tenants. Addressing possible security issues in
spectrum distribution, another study [15] emphasized the need for a reliable intermediary to
safeguard the security and privacy of operators' spectrum sharing. To address this, they
introduced a framework called Multi-OPs Spectrum Sharing (MOSS), which leverages smart
contracts to provide an auction and marketplace infrastructure, enabling independent spectrum
sharing among wireless networks.

In the literature, there are studies that employ smart contracts for authentication and data
sharing management in the IoT network. One of these studies proposed the creation of a unique
and global digital identity for IoT devices throughout their lifecycle, which is stored in the
blockchain network [16]. Another study focused on using smart contracts to facilitate
transaction coordination and automate monetary transactions between IoT devices [17].
Similarly, it was highlighted in a study that access management in IoT systems should be
distributed efficiently when multiple IoT devices are connected, and a scalable architecture
based on blockchain and smart contracts was proposed to address this challenge [18]. Another
study adopted a similar approach, introducing a multi-tier management mechanism consisting
of hub-based and pool-based layers to reduce smart contract processing costs in the
management of numerous IoT devices [19].

A data lease system utilizing smart contracts was proposed in previous works [20]. The
authors employed smart contracts and blockchain as an alternative to traditional models,
aiming to enhance the data integrity and security requirements. Another study introduced a
model based on smart contracts that incorporates Access Control Contracts (ACC), Judge
Agreement (JC), and Registration Agreement (RC) to establish distributed and reliable access
control for IoT systems [21]. ACC manages dynamic access permissions by employing
authentication methods and defined rules. JC receives and evaluates misconduct information
(e.g., too many erroneous entries) from ACCs and applies a behavioral assessment
methodology, imposing penalties if necessary. This contributes to the functioning of ACCs.
RC records the evaluation outputs of ACC in their respective smart contracts. In a different
research study, a smart contract-based smart home system model was proposed where data
from IoT sensors in emergency situations is transmitted to the Home Service Provider (HSP),
which is also developed based on smart contracts [22]. The researchers utilized the meteor
framework for communication between the HSP and the host, implementing One Time
Password (OTP) as a measure to protect against DDoS attacks and other types of security
threats. Another study addressing sensor data emphasized the need for a trusted third party to
ensure the security and traceability of sensor data in IoT systems [23]. The proposed solution
involved a smart contract and a DLT-based model to establish this trust. They developed a
decentralized application (DApp) where only the checksum values of the data from the sensors
could be verified. In the context of the sharing economy, a different approach to smart contract-
based IoT has been proposed [24]. While many sharing economy platforms implement rating

3008 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

systems to provide reliability, individual risks still exist even if users present a reliable profile.
Therefore, the authors argue that utilizing the decentralized structure of smart contracts is a
reasonable approach to provide reliable infrastructure for the sharing economy. They applied
the SLA concept by developing an exemplary model for smart contracts in the sharing
economy, automating the SLA specifications and the SLA life cycle, and ensuring
transparency of all rules.

While some studies guarantee violations to be transferred to the smart contract without
tampering, they are quite complex in terms of applicability. Some studies in this conjuncture
have provided the opportunity to rent the recorded data later. In this case, it will not be possible
for the consumer to meet the real-time data need. In addition, since blockchain technology
includes high performance computations, it is very difficult to apply to low energy devices
such as sensor nodes [1]. For this reason, a single board computer such as Raspberry Pi has
been used in almost all IoT-based studies. Researchers can test their algorithmic methods on
these small computers which are practical for fast demonstration that they expect.
Unfortunately, although these approaches are theoretically possible, they cannot be applied in
real-world systems such as mesh networks formed only by wireless sensors. Thus, our study,
unlike other studies, has modeled an SDN-Enabled WSN consisting only of wireless sensors
in order to show that the smart contract can be applied in a non-complex way on the WSN.

3. Background

3.1 SLA (Service Level Agreement)
A Service Level Agreement (SLA) is an agreement between the service provider and the
customer that includes service qualifications. These qualities determine the quality standards
of the service provided by the service provider to the customer. Criteria such as the nature and
quantity of services provided under an SLA, backup, support, service delivery time and
problem resolution times may be included to service qualifications. In the proposed model
architecture, we deployed a WSN structure, therefore, some performance metrics related to
WSN have been considered when building our model. Some of the WSN parameters that can
be used for SLA contracts are as follows [25].

• Service availability
• Down-Time
• Network Failure Rate
• Measurement Period
• Latency
• Number of Nodes in Network
• Energy consumed

In the model we propose, we establish an infrastructure that enables the control of these
parameters. If the customer desires, they can include the specified parameters in the SLA
Contract. Furthermore, SLAs encompass various stages, forming the SLA life cycle. Fig. 1
illustrates the life cycle of an SLA and indicates which stages are covered by our proposed
model. Our model consists of 5 stages, including the following: SLA definition, acceptance of
the SLA, violation monitoring, termination of the SLA, and enforcement of penalties. In our
proposed model, it is the customer who determines the criteria, and if the service provider
agrees to the conditions set by the customer, the SLA smart contract is created. The creation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3009

of the smart contract is the responsibility of the service provider. Once the customer approves
the contract, the process commences. At regular intervals during operational hours, the quality
of data transfer in the wireless network is checked to ensure it surpasses the specified threshold
values. These checks are recorded, and upon completion of the data transfer, the penalty fee
for total violations is calculated and returned to the customer, thereby automating the SLA life
cycle.

Fig. 1. SLA Life Cycle for The Proposed Model

3.2 SDN-Enabled WSN Architecture
In this study, we utilized a WSN with SDN capability, which was modeled using Riverbed
Modeler Simulation Software. Further information about this architecture can be found in [26],
[27], and [28]. The SDN-enabled WSN comprises low-energy nodes (ED) that can function as
sources, destinations, or routers. Additionally, the network includes another node type called
SDN Controller (SDNC), responsible for control and management operations, and equipped
with a Dijkstra's-based path discovery mechanism. One of the primary tasks of the SDNC,
which possesses all the network intelligence, is to determine the optimal path between the
source and destination by considering the remaining energy of the nodes along the path and
the Signal-to-Noise Ratio (SNR) of the neighboring nodes. The low-energy nodes are
equipped with an application layer, enabling them to act as Sinks and forward incoming data
to the internet environment. The WSAN Flow Protocol, extensively described in [27],
facilitates control messaging between the SDNC and ED nodes.

3.3 Ethereum and smart contracts
The blockchain system, initially introduced by Satoshi Nakamoto in 2008 as the architecture
for the Bitcoin cryptocurrency [29], is a cryptographic proof-based electronic payment system
that enables direct transactions between two parties without the need for a trusted third party
[29]. Blockchain can be conceptualized as a ledger where records are organized into time-
stamped blocks, each having a unique hash code. Each block contains the hash code of the
previous block, creating a chain of blocks [30]. When a new block is added, the node
responsible for its completion notifies all other nodes, and the mapping is finalized. The
distributed nature of the system ensures that attempts to attack the system in one or multiple
locations do not compromise its reliability. Therefore, mutual trust between nodes in the
blockchain is not required. Smart contracts, stored immutably on the blockchain network, are
code snippets that execute within the network [31]. These code snippets are secured by the
blockchain network and are resistant to external manipulation. Smart contracts can store data,
execute decision-making processes, transfer money to other accounts, and interact with other
contracts [18]. Smart contracts are permanently established on the blockchain by their owners.
Numerous cryptocurrency platforms utilize blockchain infrastructure, with Ethereum being

one of the most prominent examples. Ethereum is an open-source cryptocurrency architecture
based on blockchain that incorporates the smart contract protocol. It supports an updated
version of the blockchain consensus protocol through transaction-based state transitions [32].

3010 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

Smart contracts in Ethereum are executed on the Ethereum Virtual Machine (EVM), a Turing-
complete software operating within the Ethereum network. EVM enables the execution of
programs written in any programming language and provides sufficient time for their
execution. Each transaction operation on Ethereum incurs a specific operation fee known as
'Gas'. Therefore, when designing an algorithmic method within a smart contract, it is crucial
to optimize transactions and variables to minimize transaction fees. Moreover, Ethereum
allows developers to create and deploy decentralized applications (DApps). DApps offer
significant advantages by eliminating intermediaries in various industries, thanks to the
Ethereum platform.

4. The Proposed SLA Management Platform and Algorithms

4.1 System Overview
The model we propose encompasses the manufacturer, service provider, and customer,
covering the entire process from the production to the sale of all nodes that will constitute the
Wireless Sensor Network (WSN). In general, the process can be summarized as follows: The
manufacturer produces devices that incorporate private keys, and each device produced is
transferred to a specific smart contract defined by the manufacturer, with the keys stored in
the blockchain. The service provider purchases these devices and performs customer-specific
installations using them. The service provider establishes specific Service Level Agreement
(SLA) terms for each customer, and once both parties agree to these terms, they are
incorporated into the smart contract and deployed onto the blockchain network, initiating the
smart contract. Once the data reaches the End Device, which we refer to as the End Device, it
is transmitted to the smart contract Helper (SCH) along with certain parameters.

Fig. 2. Components of the proposed SLA Management Platform

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3011

SCH forwards the incoming data and parameters to SSC (SLA smart contract). SSC initially
verifies the incoming data using MSC. MSC validates the verification process using the
previously reported private keys from the manufacturer. If the verification process is
successful, SSC checks whether the promised network metrics are being met. In case of a
violation, the penalty amount specified in the SLA is deducted from the deposit. Additionally,
if the service provider and customer agree, the data can be asynchronously transmitted through
SCH to a data warehouse specified by the customer. The proposed model aims to detect and
control the data being transmitted in accordance with the contract, while leaving the data
storage methodology to the discretion of the developers. In the proposed model, the process is
divided into four stages, as shown in Fig. 2.

4.2 Manufacturer Stage (1)
In this process, the manufacturer plays a crucial role in the proposed model. The manufacturer
is responsible for ensuring the reliability of the devices, which are the sensing nodes in the
WSN. To achieve this, the manufacturer generates a private key for each device and securely
stores them in a tamper-proof memory section within the manufactured devices. The main
purpose of these keys is to verify the accuracy of all the information coming from within the
network. The manufacturer stores these device-specific keys in the blockchain network using
a MSC (manufacturer smart contract) that is created and deployed exclusively for each
manufacturer (Fig. 2, step 1.2). The initiation of these smart contracts is solely performed by
the manufacturer. The MSC includes the production date of the device, the global key (device
serial number), and the private key mentioned earlier. This enables anyone who purchases or
rents the device to easily verify its authenticity through the MSC. Once the manufactured
devices are registered with the MSC, they are ready for sale (Fig. 2, step 1.1).
While the private key produced by the manufacturer is stored in protected memory to prevent

tampering, it is important to consider the potential disclosure of confidential information in
the hardware due to advancing technology. To mitigate such security vulnerabilities, we adopt
a dynamic key formation strategy leveraging the flexible structure of the SDN-Enabled WSN
described in Section 3.2 The SDN Controller (SDNC) within the centralized device in the
WSN possesses all the control functions and has knowledge of all the nodes in the network. In
the SDN-Enabled WSN structure, when the SDNC receives a connection request from the
source node, it determines the optimal path between the source and destination by considering
the energy consumption ratio and RSSI metrics. The SDNC stores this path in its flow table,
which consists of a group of flow entries that specify the actions to be taken by each node on
the path for incoming packets. In our model, each flow entry also includes a field to store the
corresponding dynamic key, as illustrated in Fig. 3. Subsequently, the SDNC sends each flow
entry to the respective nodes on the path. This procedure is repeated whenever a new route is
determined.

Fig. 3. Transmitting Dynamic Key to End Device via SDN Flow Table

3012 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

In the model, SDNC requests key generation from MSC whenever a route change is required
within the network. Route changes may occur due to attacks or unexpected failures within the
network, which we consider as a critical situation requiring key change. When a route change
occurs, SDNC receives a new random key from MSC and transmits it to the source node. The
source node generates a new secret key (ℎs) by combining the incoming random key with the
private key stored in its own memory. Using this secret key, the control code is created by
hashing the data and other relevant information (1). The procedure for generating random key
on the MSC is depicted in Algorithm 1. Symbols and their definitions are shown in Table 1.

Table 1. Definiton Table
Symbol Definiton Symbol Definition
𝑘𝑘ℎ keccak256 func ℎ𝑑𝑑 hash value of data
ℎ𝑑𝑑𝑑𝑑 hash value of data created date ℎ𝑑𝑑𝑑𝑑 hash value of data arrived

date
ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 hash value of constant value ℎ𝑠𝑠 hash value of secret key

of node
𝑐𝑐 control code 𝑔𝑔𝑔𝑔 global key of node
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 The parent object where keys such as

hs, gk belonging to the relevant node
are stored in the contract

⊕ XOR operation

𝑆𝑆 SLA information object of customer
in the contract

𝑆𝑆𝑐𝑐𝑐𝑐 compensation data
latency limit defined at
current SLA

Algorithm 1. MSC – Key Generation Algorithm For Node
Input: 𝑔𝑔𝑔𝑔
Output: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘
1: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
2: 𝐼𝐼𝐼𝐼 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔
3: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟()
4: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 = 𝑘𝑘ℎ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 ⊕ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘)
5: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘
6: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼
7: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
8: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

The rand() function is developed using the Solidity language and generates bytes32 values.
This function is on the contract as a private view method and the return value is obtained
through variable parameters of the Ethereum network such as block.timestamp,
block.difficulty, msg.sender, now. Furthermore, all information exchange between SDNC and
MSC takes place via SCH.

4.3 Service Provider Stage (2)
The service provider purchases the manufactured devices from the contracted manufacturer.
The purchase process occurs exclusively through the previously established MSC by the
manufacturer. The service provider specifies the desired brand and number of devices they
want to purchase through the smart contract. The manufacturer approves the service provider's
request (Fig. 2, step 1.3) and adds the private keys of the purchased devices by the service
provider to a dedicated list on the MSC (Fig. 2, step 2.1). The main objective here is to ensure

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3013

the protection of the customer and service provider who will use the devices sold by the
manufacturer.
In the proposed model, the SLA conditions requested by the customer are adapted and defined

by the service provider (Fig. 2, step 2.2). When creating an SSC, the service provider must
adhere to specific conditions imposed by the manufacturer. This means that each SSC needs
to implement a smart contract interface specified by the manufacturer. In other words, the
development of an SSC must be based on a template provided by the manufacturer. In the
software realm, this approach aligns with object-oriented programming, where the template
corresponds to an interface or an abstract class. This approach restricts the developer from
deviating beyond certain structural requirements. In the proposed model, the manufacturer-
imposed interface must satisfy the following conditions.

• It will have a method to verify data by connecting to MSC.
• Must take 6 parameters.
• Must have 1 byte return type.

The Solidity code created under these conditions is as Fig. 4.

Fig. 4. Solidity Code Interface For SSC

These conditions have been accepted as a standard specific to the model we propose. By
accepting this standard, the smart contract is created and deployed together with the SLA terms.
In addition, in our proposed model, the service provider must create and manage an
intermediate service layer, which we call SCH, in order for the data coming over the Wireless
Network to reach the smart contract. The service provider undertook the installation of the
Wireless Network and the SCH infrastructure in the model we recommended.

4.4 Customer Stage (3)
The customer is the party which is requesting service; therefore, it usually contracts with the
service provider that can best meet its needs. After the customer agrees with the service
provider on the terms of the SLA, it approves the SSC created by the service provider (Fig. 2,
step 3.1) and the deposit amount determined according to the terms of the SLA is transferred
to the service provider's account. Thus, the service provider completes the setup.

4.5 Production Process Stage (4)
The details of the whole process are shown on the sequence diagram given in Fig. 5. In this
stage, the data coming from the WSN is transferred to the SCH via TCP ports. Data is

3014 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

transferred out of the wireless network over the sink End Device as stated earlier.

Fig. 5. Sequence Diagram of SDN-Enabled WSN SLA Ecosystem

In order to initiate data transfer over the Wireless Sensor Network, the SDNC must determine
the optimal path between the source and destination. Once the data transmission commences
(Fig. 5, step 4.1) and the data reaches the sink End Device, the sink appends certain parameters
to the data to facilitate its delivery to the SCH. These parameters include the global key,
network metrics, and control code specific to the End Device. Together with the data, these
parameters form the frame depicted in Fig. 6. The network metrics can be adjusted to meet
different requirements based on criteria such as downtime and energy consumption. In the case
study presented in Section 5, we have selected the delay time as the criterion for mesh metrics.
Thus, the parameters for this criterion consist of the data creation time and the arrival time at
the End Device.

Fig. 6. SDN-Enabled WSN - SLA Data Frame

The control code is generated by applying specific processes to the data and network metrics
using the private key stored in the secure memory of the End Device. In our proposed model,
control code generation and verification occurs solely on the node and the MSC to ensure data
transmission reliability. Furthermore, only the manufacturer is responsible for determining the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3015

control code generation method and it remains undisclosed to others. We provide flexibility
for manufacturers in this aspect. In our model, the parameters listed in Table 1 are used for
the generation of the control code. We perform an XOR operation on the parameters (ℎ𝑥𝑥),
followed by passing the obtained result through the keccak256 function to derive the control
code (1).

𝑘𝑘ℎ(ℎ𝑠𝑠 ⊕ ℎ𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕ ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑐𝑐 (1)

The SCH strictly records in IPFS the network measurements contained in every data it receives
(Fig. 5, steps 4.2 and 4.3). SCH also transmits incoming data to SSC for violation control (Fig.
5, step 4.4 and 4.5). SSC sends the global key, network metrics and control code parameters
in the incoming data to the MSC (Fig. 5, step 4.6), because it does not know the private keys
of the devices. As we mentioned formerly the manufacturer registers all private keys to MSC
during the production phase, with reference to their global keys. As a result, SSC definitely
performs data verification over MSC. The MSC control code verification mechanism is shown
in Algorithm 2. The control code verification function of the MSC is designated as a view
function in Solidity, ensuring that it operates without gas consumption. Additionally, gas-free
functions like keccak256 and abi.encodePacked are employed. In essence, no gas expenditure
is required for these operations. In the model we recommend in this respect, the service
provider or customer does not have to pay any fees for this transaction.

Algorithm 2. MSC Algorithm – Control Code Verification
Input: 𝑔𝑔𝑔𝑔, ℎ𝑑𝑑 ,ℎ𝑑𝑑𝑑𝑑 , ℎ𝑑𝑑𝑑𝑑 , 𝑐𝑐
Output: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
1: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
2: 𝐼𝐼𝐼𝐼 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔
3: 𝐼𝐼𝐼𝐼 𝑘𝑘ℎ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 ⊕ ℎ𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐
4: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
5: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼
6: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼
7: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
8: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

In the control code verification mechanism, the global key parameter is first searched in a Map
located within the MSC. If a match is found, the private key associated with the corresponding
list item is retrieved. Subsequently, this specific key and the incoming parameters undergo the
keccak256 hash process, and the resulting code is compared with the control code. If the
comparison yields a match, the SSC returns true; otherwise, it returns false (Fig. 5, step 4.7).
The SSC also increments the verification or error counter based on the response. As a result,
even if any malicious behavior occurs during the IPFS recording phase, the total number of
data confirmations via the SSC can be compared with the IPFS file system during monthly
reporting. Any discrepancies can lead to the cancellation of the SLA.

3016 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

Algorithm 3. SSC Algorithm – SLA Check Data
Input: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔, ℎ𝑑𝑑 , ℎ𝑑𝑑𝑑𝑑 ,ℎ𝑑𝑑𝑑𝑑 , 𝑐𝑐
Output:
1: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑆𝑆
2: 𝐼𝐼𝐼𝐼 𝑆𝑆𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 2
3: 𝐼𝐼𝐼𝐼 𝑆𝑆𝑐𝑐𝑐𝑐 < (ℎ𝑑𝑑𝑑𝑑 − ℎ𝑑𝑑𝑑𝑑)
4: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
5: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼
6: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼
7: 𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

The SSC's data control mechanism is depicted in Algorithm 3. The algorithm functions as
follows: the MSC data validation function is invoked with the incoming parameters. If the
return value is true, the algorithm proceeds. Utilizing the slaId parameter, the current SLA
object is retrieved from the SLA Map list. A predefined acceptable delay time is obtained from
the corresponding SLA object. This time is then compared with the difference between the
creation time and arrival time of the incoming data. If the difference exceeds a certain
threshold, the calculatePenalties function is invoked (Fig. 5, step 4.8). Within the
calculatePenalties function, if the breach period for the current compensation exceeds the
acceptable time, penalty transactions are executed, resulting in the transfer of penalty fees from
the SSC balance to the client. Upon the expiration of the SLA lifetime (Fig. 5, step 4.9), the
remaining amount in the SSC balance, after the penalty transactions, is transferred to the
service provider's account (Fig. 5, step 4.10). Finally, the total amount of penalty transactions
is sent to the customer's account (Fig. 5, step 4.11), thereby completing the process.

We conducted a comparison of the most relevant models recently proposed and the model we
proposed over some metrics and summarized this in Table 2.

Table 2. Comparison between proposed and most related recent models
Related
model

Infrastructure SLA data
(network metric)
generation place
for smart
contract

Blockchain
network
location

Dynamic
SLA

Blockchain
Connector

Battula et
al. [33]

Fog computing Fog Device Ethereum Yes Smart Oracle

Alzubaidi
et al. [34]

Edge
Computing

IoT Service
Provider (server)

Hyperledger
Fabric

No Smart Oracle

Hang et al.
[24]

IoT Third-party app Hyperledger
Fabric

No Hyperledger
Composer

Uriarte et
al. [9]

Edge computing Third-party app Ethereum Yes Smart Oracle

Kochovski
et al. [35]

Edge computing Fog/Edge Devices Chain Link-
Ethereum

No Smart Oracle

Zhou et al.
[10]

Cloud Cloud Service Ethereum No Smart Oracle

Proposed
model

SDN-enabled
WSN

WSN Node Ethereum No SCH

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3017

In most of the similar studies, they managed IoT devices through Edge, Fog or third party
applications. Therefore, even if there is no decision maker for SLA violation detection, SLA
data (network metrics such as latency) sent to the smart contract are generated from these
middleware devices or third party applications. The installation and management of these
devices is done by the service provider. In addition, the applications running on these devices
are usually under the control of the service provider. There may be an opportunity for a service
provider looking to turn SLA rules in their favour. Therefore, the fact that a party to the
agreement manages these devices, which are critical for SLA, may leave a question mark for
the customer.
The main difference between the proposed model and other studies is that security has a

reliable method from wireless node to smart contract, and only strictly network metric data is
generated and secured in the wireless node. Therefore, a control code signature that does not
accept changes is transmitted directly to the smart contract. SCH acts only as a bridge. The
service provider cannot interfere with the data or the device generating the data. The security
analysis for the proposed model is detailed in Section 5.5.

5. Case Study

5.1 Technical Overview
We identified and applied a case study to demonstrate the feasibility of the proposed model
and to obtain debatable results. We have specified all the components and applications
required for simulation in section 5.2. In the context of the case study infrastructure, we
utilized the wireless sensor architecture previously developed in our work [1] as the
fundamental framework. In the case study, we examined a company that does genetic research
as a customer, and we made a sample service provider the counterparty to make an SLA
agreement with the customer. The customer has sensitive sensor data and there are some SLA
quality service conditions determined by the customer. In this context, we identified the
customer's two requests and examined the potential of our proposed model to fulfill these
requests.
• SLA rules work without exception and leave no room for doubt.
• Ensure that data (network metric) is transmitted from the wireless sensor node to the SCH

and from there to the SSC without any manipulation along the transmission line.
In the model we proposed for the first request of the customer, we ensured that the SLA rules
are immutable by storing them on the smart contract. In addition, with the SSC we have
developed, the relevant fines are transferred to the customer's account without exception at the
time of working. Through the control code verification procedure we have devised, network
metric values are safeguarded against any alteration. Thus, any external factor cannot violate
the SLA rules by tampering with the network metric values along the transmission line and
cause a monetary manipulation. In section 5.3, we concretely presented the SLA metrics and
explained how we did the calculations. We showed the model on an example figure. In section
5.3, we discussed the applicability of the model with the experimental results. We have
graphed the critical energy efficiency and time delay results for low-power wireless nodes. For
the second request of the customer, we made a security analysis of the model in section 5.5,
examined the possible threats on a scenario basis and expressed how we overcome these
threats.

3018 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

5.2 Platform Components
5.2.1 WSN Simulation Model
SDN-Enabled WSN structure in the platform is modeled and simulated using Riverbed
Modeler Software. The WSN has 10 EDs and 1 SDNC device in the simulation scenario, as
shown in Fig. 7.

Fig. 7. Simulation model of SDN-Enabled WSN

MICAz node energy consumption parameters are used in the simulation for a more realistic
performance evaluation. In addition, similar working conditions are chosen for all scenarios
to obtain a consistent performance comparison. Relevant simulation parameters are tabulated
in Table 3.

Table 3. Relevant simulation parameters
 Name Value

Device settings for
both the proposal
and ZigBee-based

WSAN

Data Rate 250 kbps
ED status transmission period 25 s

Initial energy 5 J

Channel model Free‐space propagation
model (LoS)

Power threshold −76 dBm (80 mW)
Battery parameters
(Micaz mode) for
both the proposal
and ZigBee-based

WSAN

Transmission mode (0 dBm) 17.4 mA
Receive mode 27.7 mA

Idle mode 35 µA

Sleep mode 16µA

5.2.2 Smart Contract Tools
• The technologies we utilize to develop smart contract in the proposed model are listed

below.
• Solidity (Ethereum VM Language): Solidity is an object oriented programming language

used to develop smart contracts [36]. It is used on many blockchain platforms, especially
Ethereum. Thus, the behavior of the accounts can be changed [37]. The developed code
runs on EVM after it is compiled.

• Truffle (smart contract Test and Deploy Framework): Truffle is a developer environment
that enables simple and easy testing of Ethereum smart contracts after they develop them
[38].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3019

• Ganache (smart contract Local VM): Ganache creates a virtual Ethereum blockchain for
the smart contracts developed [39]. It also testing the code that is developed by opening
new accounts on this virtual blockchain.

• Web3js (smart contract Java Class Helper): web3.js is a program library that allows you
to communicate with a local or remote Ethereum network using HTTP, IPC or WebSocket
[40].

• MetaMask (Blockchain Account Panel - Google Chrome Plugin): MetaMask is a
cryptocurrency wallet developed as a browser extension to communicate with the
Ethereum network [41]. Thanks to a compatible browser, users can manage their own
accounts, and send or receive ETH with this add-on.

5.2.3 Smart Contract Helper (SCH)
smart contract Helper is a platform based on Spring Boot [42] that serves as a mediator
between smart contracts and the SDN-Enabled WSN. It facilitates the communication between
the SDN-Enabled WSN and the smart contracts deployed on the blockchain network. The
responsibility for managing this platform lies with the service provider, who is tasked with
ensuring its continuous operation. The helper leverages the Web3.js Java library to establish
communication with the smart contracts. Additionally, several RESTful POST services have
been developed to handle various tasks within the platform.

5.2.4 IPFS (The InterPlanetary File System)
IPFS can be defined as a distributed file system that generally enables data storage and sharing
on a distributed peer- to-peer network [43]. In the IPFS system, a unique key code is given to
each file and all of its blocks. The nodes in the network store the content being interested and
some indexing information related to other nodes' content. Thus, a secure web environment
against deletion is provided.

5.3 Experimental Model and Assumptions
Table 4 includes the operating parameters and assumptions of the experimental study
employed to obtain the performance of the proposed SLA management platform. Fig. 8
illustrates the SDN-Enabled WSN topology that the service provider establishes for XY
company.

3020 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

Table 4. Case Study for Proposed
Model

Customer
XY Company
Conducting
Genetic Research

Network
Infrastructure

SDN-Enabled
WSN (Fig.7)

Sensor
Measurement
Period

2 sec

Compansation
Period 300 sec (150*2)

Acceptable
Average
Transmission
Time

0.194 sec

Targeted
Transmission
Delay Rate

< %5

Customer
Deposit 30 ETH

Penalty Per
Compensation
Period

0.1 ETH

Simulation
Time 30 min

Fig. 8. SDN-Enabled WSN topology of the smart

building in the case study

In the presented case study, XY is a customer company engaged in genetic research.
Temperature measurement plays a crucial role in their research, particularly in room number
011. It is imperative to measure the temperature accurately and ensure uninterrupted data
transfer to the central data servers. The primary criteria for this scenario are data continuity,
immutability and speed. To meet these requirements, XY establishes an SSC based on
blockchain assurance with a network infrastructure provider (Service Provider). The SSC
outlines the terms and conditions for the data transmission process, specifically stating that
sensor data must be transmitted to the central server before it drops below a predefined
threshold. The client has the flexibility to define individual requirements for each research
room. In the evaluation of performance, room number 011 is considered, taking into account
the following conditions and assumptions;
• The temperature values measured in Room 011 must be transmitted to the central server

every 2 seconds.
• If the customer accepts the contract, they are required to deposit a fee of up to 30 ETH.
• The total packet delay is calculated for every 150 sensor data packets.
• The maximum acceptable time for each data packet to reach the server is determined as

0.253 seconds. To determine this value, the average data transmission times on and off the
network were measured in a pre-scenario test simulation. In this simulation, a total of 900
data packets were transmitted to the destination node. Fig. 9 illustrates the time-dependent
graph showing the duration of packet transmission from the origin node to the destination.
The average transmission time was calculated as 0.194 seconds, and a 30% deviation time
was added to the average time to determine the acceptable time.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3021

Fig. 9. Transmission Time

The latency limit was set by the customer as 5%. In order to calculate actual delay rate, the
total delay time is calculated (2). Then, the delay rate is calculated by using this obtained delay
time (3). Calculation details are shown on below.

{𝑇𝑇} = {𝑇𝑇} −
({𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶} + {𝐴𝐴} ∗ 150)

{𝑇𝑇} = {𝑇𝑇} − (300 + 0,253 ∗ 150) (2)

{𝑇𝑇} = �{𝑇𝑇}

{𝑇𝑇}
� ∗ 100 (3)

Total transmission success will be calculated; if {𝑇𝑇}
greater than five, penalty action {𝑃𝑃} will be applied to the
service provider. Since data delay is the main criterion in this scenario, the network metrics in
Fig. 6 were determined as the in-network creation date of the data and the in-network arrival
date of the data.

5.4 Experimental Results and Discussions
The simulation results of the WSN model in the proposed SLA management platform were
obtained using a computer equipped with a 2.50 GHz i5 2450M processor and 4 GB of RAM.
The simulation ran for 30 minutes, during which 900 temperature data points were transmitted
from the source to the destination node as shown in Fig. 9. Upon receiving the data, the
destination node adds certain parameters, including the global key, data creation date, data
arrival date, and control code, before forwarding it to the smart contract Helper. The smart
contract Helper then sends the incoming data to both IPFS and SSC. During each
compensation period, which occurs every 5 minutes, the SSC calculates the delay. If the delay
exceeds the predetermined value, penalty action is applied. The SSC verifies the correctness
of the control code by transmitting it to the MSC. It is important to note that no faulty control
codes were generated during the simulation. The initial balances in the customer, service
provider, and SSC accounts are summarized in Table 5.

3022 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

Table 5. Balance Initial Values
of Customer, Service Provider

and Contract Accounts
Account Name Initial

Value
Service Provider
Account

5 ETH

Customer Account 40 ETH
SSC Account 0,5 ETH

Gas Unit Fee = 20 Gwei =
(𝟐𝟐𝟐𝟐 ∗ 𝟏𝟏𝟏𝟏−𝟗𝟗 𝑬𝑬𝑬𝑬𝑬𝑬)

Fig. 10. Amounts of Gas Consumed for smart contract

Processes

The initial balance of the service provider is set as 5 ETH, which covers the transaction fee
required to initiate the SLA on the smart contract. Similarly, the initial balance of the SSC is
determined as 0.5 ETH to handle penalty transactions. To provide more detailed simulation
results, high values are chosen for deposit and penalty fees. Fig. 10 illustrates the gas
consumption of smart contract transactions received through Truffle. It is evident from the
figure that the service provider consumes the highest amount of gas compared to other parties.
This discrepancy arises from the fact that the service provider deploys the SSC. The gas
consumption for SSC deployment is determined by variables defined in the contract for
function content and storage of critical data. For instance, storing 32 bytes of data requires
20,000 gas consumption [44]. Therefore, the deployment cost of the SSC is relatively high.
The total gas consumption for SSC and MSC deployment is calculated as 1,790,881 (0.0358
ETH). While the total gas consumption to approve the defined SLA in the customer SSC is
83,091, the gas amount spent by the service provider to initiate this SLA is 385,103.
Additionally, during the Check Data operation in the SSC, 33,974 gas is consumed to record
violations, and another 33,974 gas is consumed to pay penalties to the customer. Ethereum
imposes gas consumption for money transfers, where higher gas amounts lead to faster transfer
processes on the network. In our simulation, the gas consumption for a money transfer is
determined as 8,281. Fig. 11 illustrates the time-dependent graph of customer, service provider
and SSC smart contract account balances during the SLA execution process. Upon SLA
approval, the customer transfers 30 ETH to the SSC accounts. The total transmission time is
monitored during six compensation intervals. The transmission times during compensation
intervals 2 and 5 exceed the targeted time. As a result, in both compensation intervals, 0.15
ETH is transferred from the SSC account to the customer's account. When the term is
completed, the SLA is terminated, and the SSC transfers the remaining balance to the service
provider. As depicted in the graph, the proposed model ensures that penalties for SLA
violations at time t are promptly transferred to the customer's account. Upon the SLA's
expiration, any remaining balance in the contract account is automatically transferred to the
service provider's account.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3023

Fig. 11. Time Based Change of Balance Values of Customer, Service Provider and Contract Accounts

in Data Transferring and Verifying Period

For the SDN-Enabled WSN in the case study, two different simulation scenarios are evaluated
to investigate the effects of the developed models and algorithms. The first one, which is
referred to as "Scenario 1", includes the sensor network without any SLA consideration. In
contrast, the second one, which is referred to as "Scenario 2", has the proposed SLA-related
modifications on the application layer of ED, which integrates the sensor network into the
SLA management platform.

Fig. 12. Total Energy Consumed for Proposed Model Enabled/Disabled

Fig. 12 and Fig. 13 present the results of both scenarios. Fig. 14 displays the total energy
consumption ratio of the SDN-Enabled WSN. It can be observed from the figure that the End
Device (ED) in Scenario 2 consumes a total of 0.0043 Joules more energy compared to

3024 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

Scenario 1. This difference is expected since the proposed SLA-related algorithms impose
computational load on the system. Furthermore, when considering both results, there is no
significant energy consumption observed on the last nodes. This is because the SDN controller
(SDNC) performs the resource-intensive operations that require higher performance in the
SDN-Enabled WSN architecture.

Fig. 13. Data Transmission Delay Between End Device and SCH for Proposed Model

Enabled/Disabled

As a result, the EDs can conserve their energy, which is crucial for prolonging the network's
lifetime [1] [26]. Another advantage of the SDN-Enabled WSN architecture for the proposed
model is the quick transfer of statistics required for the SLA defined on the smart contract
from the SDNC to the nodes, and subsequently transmitted to the smart contract Helper (SCH)
through the last node. This enables fast and energy-efficient interaction with smart contracts.
Fig. 13 illustrates the time taken to transfer SLA data from the End Device to the SCH,
considering both scenarios. The results indicate that Scenario 2, with the proposed SLA
extension, exhibits a greater delay compared to Scenario 1 due to the additional processing
cost required for generating the SLA-related control code in the End Device. Furthermore, in
terms of the sustainability of the proposed model, smart contracts' processing speeds should
be stable and fast. Therefore, the verification of the control code, which constitutes the main
workload in the smart contract, should be swift.

Fig. 14. Processing Time of Algorithm-3 According to Enabled-Disabled State of Line 4 in

Algorithm-3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3025

Fig. 14 demonstrates the processing time of the code (Algorithm 3) that includes the SSC data
control mechanism. It was previously mentioned that the SSC calls the MSC function (line 2
of the code in Algorithm 3) to confirm the correctness of the received data. To assess the
additional cost incurred by calling this action and determine if any unexpected delay would
disrupt the system, we disabled this process and restarted the simulation. The results indicate
that there was no significant change observed in the average time. This process took a
negligible time of approximately 3,006 milliseconds. As a result, the data verification
mechanism in the SSC introduces an extra delay of 0.75% during data transmission from the
End Device to the SCH and increases the energy consumption ratio by 1.2% for the target
node. Considering that these values are quite small, the additional cost of our security model
can be neglected for many applications.

5.5 Security Analysis of Proposed Model
We have established the trust between the model intermediaries we recommend. However, to
ensure this trust, it is possible to ensure that the SLA rules and network metrics are
unchangeable on the blockchain and that the data is not manipulated throughout the
transmission channel. We have demonstrated the feasibility of the proposed model through a
comprehensive case study in previous chapters, complemented by a thorough security analysis.
We tested the resilience of the model against threats over possible threat scenarios. Based on
the case study shown in Fig. 8, we can examine the following threat scenarios.

5.5.1 Threat Scenario 1: Unauthorized Node Tampering and Data Interference
We assume that an unauthorized and malicious attacker in the building tampered with the
nodes or tampered with the network, preventing data from reaching the End Device. In our
previous study, we tested attack scenarios such as Wormhole attack, Sinkhole Attack and
Black Hole Attack that cause data to move in different rotations or cause data to be destroyed,
on the same infrastructure. We have used the model we developed in our previous study [1] in
this working architecture as well. For such attacks, it has been simulated over OPNET on a
scenario basis and it has been observed that the attacks made for the data transmitted from
node to node in the WSN network are successfully prevented.

5.5.2 Threat Scenario 2: Impersonate The SCH (Copycat Attack)
The attacker could impersonate the SCH acting as the orchestrator between the WSN and the
smart contract. For example, the attacker may want to transmit the temperature measurement
values to the smart contract with different values through the copycat application.
• In the model we proposed, the service provider is responsible for creating a specific smart

contract instance for each customer. Therefore, the attacker must first know the
application-specific smart contract account address. In case of incompatibility between the
attacker account address and SCH, he will not be able to forward the data as he wishes.

• Each contract has its own device and private keys and dynamic keys for each end-to-end
data transmission at runtime. Therefore, if the application account address is captured, the
copycat SCH can transmit its own generated data to the contract. However, the proposed
model introduces Algorithm 2 as a safeguard. If the data does not match the control code
signature value, it receives a rejection from the contract. With a certain number of
rejections, the service provider will be able to understand that there is an attack on the
network. The service provider can determine the relevant metrics for network intrusion
detection.

3026 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

5.5.3 Threat Scenario 3: Abuse of Responsibility
In our proposed model, we stated that WSN architecture management and installation is a
division of labor belonging to the provider. A vulnerability can occur if this responsibility is
abused or installed in a way that is vulnerable to external threats. Especially in WSN, the
change of the location of the nodes is an important criterion in terms of security. It is not
expected that the position will change during operation. In our previous work, we have stored
the route changes and node active/passive record keeping on the SDN Controller due to
location change or other reasons. In addition, in this study, we ensured that the route changes
are verifiable, and we made it mandatory to request a random key in the contract for situations
that would require a route change. Network metrics and control packets are stored as read-only
in the IPFS environment. Thus, the customer can examine such trust parameters or verify this
data via MSC at the end of the day.

The security analysis performed in potential threat scenarios highlights the robustness of the
proposed model in mitigating potential risks and protecting data and network integrity. Thanks
to the integration of lightweight cryptographic methodology, the model stands as a solid
solution for security challenges in Wireless Sensor Networks.

6. Conclusion
Blockchain technology is experiencing daily growth in its widespread use, and it is interacting
with various technologies to create new architectures in numerous domains. With the flexible
nature of wireless networks and the powerful capabilities of smart contracts, our proposed
model offers extensive possibilities for future use in various fields. Although current EVM gas
fees may not provide a comfortable experience for IoT, we believe that this issue will be
resolved in the future with the emergence of new technologies that offer low transaction fees,
presenting a novel approach to this problem. In our proposed model, we have ensured that gas
usage is minimized in recurring operations. We have demonstrated that the data control code
verification function, which is the cornerstone of our model, is cost-free, and the additional
operations performed on the nodes do not impose a significant burden in terms of energy and
performance. This makes the model promising for real-life applications.

Furthermore, we assert that the dynamic key generation mechanism in our proposed model
effectively mitigates attack vectors such as imitation of the control code generation process,
tampering with the node by malicious agents, or unauthorized installation of new programs.
As IoT systems continue to advance rapidly, the usage of wireless networks expands
accordingly. Therefore, the case study of our proposed model can be applied in various
domains beyond network management operations. Some potential case studies include:

• Resolving disputes between parties in cases of customer-side damages (e.g., fire,
system outages) resulting from weaknesses in the network.

• Network leasing and transfer.
• Incorporating additional sensors into the network (allowing users to contribute their

own data using their own sensors by joining the wireless network through smart
contracts with specific protocols).

• Determining network usage times based on SLA agreements.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3027

References
[1] E.Karakoc, C. Ceken, “Black Hole Attack Prevent Scheme using Blockchain-Block Approach in

SDN-Enabled WSN,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 37, no.1,
pp. 37-49, 2021. Article (CrossRef Link)

[2] D. C. Verma, “Service level agreements on ip networks,” Proceedings of the IEEE, vol. 92, no. 9,
pp. 1382–1388, 2004. Article (CrossRef Link)

[3] João Paulo de Brito Gonçalves, Roberta Lima Gomes, Rodolfo da Silva Villaca, Esteban Municio,
Johann Marquez-Barja, “A Quality of Service Compliance System Empowered by Smart Contracts
and Oracles,” in Proc. of 2020 IEEE International Conference on Blockchain (Blockchain), 2020.
Article (CrossRef Link)

[4] O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D. Cojocarasu, “Managing Violations in
Service Level Agreements,” in Grid Middleware and Services, Boston, MA: Springer US, 2008,
pp. 349–358. Article (CrossRef Link)

[5] G. Gaillard, D. Barthel, F. Theoleyre and F. Valois, “Service Level Agreements for WSN: a WSN
Operator’s Point of View,” in Proc. of 2014 IEEE Network Operations and Management
Symposium (NOMS), 2014. Article (CrossRef Link)

[6] João Paulo de Brito Gonçalves, Rodolfo da Silva Villaca, Esteban Municio, Johann Marquez-Barja,
“A Service Level Agreement Verification System using Blockchains,” in Proc. of 2020 IEEE 11th
International Conference on Software Engineering and Service Science (ICSESS), 2020.
Article (CrossRef Link)

[7] E. J. Scheid, B. B. Rodrigues, L. Z. Granville, and B. Stiller, “Enabling dynamic sla compensation
using Blockchain-based Smart Contracts,” in Proc. of 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), IEEE, pp. 53–61, 2019. Article (CrossRef Link)

[8] R. B. Uriarte, H. Zhou, K. Kritikos, Z. Shi, Z. Zhao, R. D. Nicola, “Distributed service-level
agreement management with Smart Contracts and Blockchain,” Concurrency and Computation
Practice and Experience, vol. 33, no. 14, 2021. Article (CrossRef Link)

[9] R. B. Uriarte, R. de Nicola, and K. Kritikos, “Towards distributed sla management with Smart
Contracts and Blockchain,” in Proc. of 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 266–271, 2018. Article (CrossRef Link)

[10] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao, “Enforcing trustworthy cloud SLA
with witnesses: A game theory–based model using Smart Contracts” Concurrency and
Computation Practice and Experience, vol. 33, no. 14, 2021. Article (CrossRef Link)

[11] Y. C. Hu, T. T. Lee, D. Chatzopoulos, P. Hui, “Analyzing Smart Contract interactions and contract
level state consensus,” Special Issue: Special Issue on Cryptocurrencies and Blockchains for
Distributed Systems, Vol. 32, no. 12, 18 March 2019. Article (CrossRef Link)

[12] E. J. Scheid, B. Stiller, “Automatic SLA Compensation based on Smart Contracts,” technical report
– No. IFI-2018.02,University of Zurich Department of Informatics. Article (CrossRef Link)

[13] J. Backman, S. Yrjol¨ a, K. Valtanen, and O. M ammel a, “Blockchain network slice broker in 5g:
Slice leasing in factory of the future use case,” in Proc. of 2017 Internet of Things Business Models,
Users, and Networks, IEEE, pp. 1–8, 2017. Article (CrossRef Link)

[14] L. Zanzi, A. Albanese, V. Sciancalepore, and X. Costa-Perez, “Ns-bchain: A secure Blockchain
framework for network slicing brokerage,” in Proc. of ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020. Article (CrossRef Link)

[15] S. Zheng, T. Han , Y. Jiang, X. Ge, “Smart Contract-Based Spectrum Sharing Transactions for
Multi-Operators Wireless Communication Networks,” IEEE Access, Vol. 8, pp. 88547 – 88557,
2020. Article (CrossRef Link)

[16] A. S. Omar, O. Basir, “Identity Management in IoT Networks Using Blockchain and Smart
Contracts,” in Proc. of 2018 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), 2018. Article (CrossRef Link)

https://www.inderscience.com/info/inarticle.php?artid=115125
https://ieeexplore.ieee.org/document/1323286
https://ieeexplore.ieee.org/document/9284773
https://link.springer.com/chapter/10.1007/978-0-387-78446-5_23
https://ieeexplore.ieee.org/abstract/document/6838261
https://ieeexplore.ieee.org/document/9237735
https://ieeexplore.ieee.org/document/8717859
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5800
https://ieeexplore.ieee.org/document/8591028
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5511
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5228
https://www.semanticscholar.org/paper/Automatic-SLA-Compensation-based-on-Smart-Contracts-Scheid-Stiller/5d4ea67e92fd4064d74831bb9ac71e3ea6970437
https://ieeexplore.ieee.org/document/8260929
https://ieeexplore.ieee.org/document/9149414
https://ieeexplore.ieee.org/document/9086020
https://ieeexplore.ieee.org/document/8726730

3028 Karakoç et al.: Secure SLA Management Using
Smart Contracts for SDN-Enabled WSN

[17] M. Shurman, A.Al-Rahman Obeidat, S. Al-Deen Al-Shurman, “Blockchain and Smart Contract for
IoT,” in Proc. of 2020 11th International Conference on Information and Communication Systems
(ICICS), 2020. Article (CrossRef Link)

[18] D. R. Putra, B.Anggorojati, A. P. P. Hartono, “Blockchain and smart-contract for scalable access
control in Internet of Things,” in Proc. of 2019 International Conference on ICT for Smart Society
(ICISS), 2019. Article (CrossRef Link)

[19] M. A. B. Ahmadon, S. Yamaguchi , “IoT Device Multi-layer Connection Management Mechanism
with Blockchain Smart Contracts,” in Proc. of 2020 Zooming Innovation in Consumer
Technologies Conference (ZINC), 2020. Article (CrossRef Link)

[20] H.-A. Pham, T.-K. Le, T.-N.-M. Pham, H.-Q.-T. Nguyen, T.-V. Le, “Enhanced Security of IoT
Data Sharing Management by Smart Contracts and Blockchain,” in Proc. of 2019 19th
International Symposium on Communications and Information Technologies (ISCIT), 2019.
Article (CrossRef Link)

[21] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, J. Wan,“Smart Contract-Based Access Control for the
Internet of Things,” IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 1594-1605, April 2019.
Article (CrossRef Link)

[22] Y. N. Aung, T. Tantidham, “Ethereum-based Emergency Service for Smart Home System: Smart
Contract Implementation,” in Proc. of 147 International Conference on Advanced Communications
Technology(ICACT), 2019. Article (CrossRef Link)

[23] C. Lehnert, G. Engel, T. Greiner, “Distributed Ledger and Smart Contract Based Approach for IoT
Sensor Applications,” in Proc. of 2020 International Conference on Omni-layer Intelligent Systems
(COINS), Barcelona, Spain, 2020. Article (CrossRef Link)

[24] L. Hang and D. Kim, “SLA-Based Sharing Economy Service with Smart Contract for Resource
Integrity in the Internet of Things,” Applied Sciences, 9(17), 2019. Article (CrossRef Link)

[25] G.IORDACHE, Ad. PASCHKE, M. MOCANU, C. NEGRU1, “Service Level Agreement
Characteristics of Monitoring WSN for Water Resource Management (SLAs4Water),” Studies in
Informatics and Control, vol. 26, no. 4, pp. 379-386, 2017. Article (CrossRef Link)

[26] Mohammed Al Hubaishi, Celal Çeken, Ali Al Shaikhli, “A novel energy‐aware routing mechanism
for SDN‐enabled WSAN,” International Journal of Communication Systems, 2018.
Article (CrossRef Link)

[27] Ali Al-Shaikhli, Celal Çeken, Mohammed Al-Hubaishi, “WSANFlow: An Interface Protocol
between SDN Controller and End Devices for SDN-Oriented WSAN,” Wireless Personal
Communications, 101.2, 755-773, 2018. Article (CrossRef Link)

[28] Internet of Things Research Laboratory Sakarya University. [Online]. Available:
http://www.iotlab.sakarya.edu.tr/Projects/Project1.html (Accessed February 22, 2023).

[29] [Online]. Available: https://en.bitcoin.it/wiki/Block_hashing_algorithm. (Accessed January 4,
2023).

[30] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum
project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014. Article (CrossRef Link)

[31] Buterin, Vitalik (August 7, 2015). "Ethereum - On Public and Public Blockchains,". [Online].
Available: https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains.

[32] https://tr.wikipedia.org/wiki/Ethereum. (Accessed February 1, 2023)
[33] S. K. Battula, S. Garg, R. Naha, M. B. Amin, B. Kang, E. Aghasian, “A blockchain-based

framework for automatic SLA management in fog computing environments,” The Journal of
Supercomputing, vol. 78, pp. 16647-16677, 2022. Article (CrossRef Link)

[34] A. Alzubaidi, , K. Mitra and E. Solaiman “A blockchain-based SLA monitoring and compliance
assessment for IoT ecosystems,” Journal of Cloud Computing: Advances, Systems and Applications,
vol. 78, 2023. Article (CrossRef Link)

[35] P. Kochovski, V. Stankovski, S. Gec, F. Faticanti, M.Savi, D. Siracusa, S. Kum, “Smart Contracts
for Service-Level Agreements in Edge-to-Cloud Computing,” Journal of Grid Computing, vol. 18,
pp. 673-690, 2020. Article (CrossRef Link)

[36] https://en.wikipedia.org/wiki/Solidity (Accessed February 3, 2023)
[37] https://docs.soliditylang.org/en/v0.8.1/ (Accessed February 3, 2023)

https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/8969807
https://ieeexplore.ieee.org/document/9161437
https://ieeexplore.ieee.org/document/8905219
https://ieeexplore.ieee.org/document/8386853
https://ieeexplore.ieee.org/document/8701987
https://ieeexplore.ieee.org/document/9191409
https://www.mdpi.com/2076-3417/9/17/3602
https://sic.ici.ro/wp-content/uploads/2017/12/SIC_2017-4-Art.1.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3724
https://link.springer.com/article/10.1007/s11277-018-5714-5
https://en.bitcoin.it/wiki/Block_hashing_algorithm
https://gavwood.com/paper.pdf
https://tr.wikipedia.org/wiki/Ethereum
https://link.springer.com/article/10.1007/s11227-022-04545-w
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-023-00409-7
https://link.springer.com/article/10.1007/s10723-020-09534-y

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023 3029

[38] https://www.trufflesuite.com/docs/truffle/overview (Accessed February 3, 2023)
[39] https://www.trufflesuite.com/docs/ganache/overview (Accessed February 3, 2023)
[40] https://web3js.readthedocs.io/en/v1.3.0/ (Accessed February 3, 2023)
[41] https://en.wikipedia.org/wiki/MetaMask (Accessed February 3, 2023)
[42] https://spring.io/projects/spring-boot (Accessed February 3, 2023)
[43] https://ipfs.io/ (Accessed February 3, 2023)
[44] http://gavwood.com/paper.pdf (Accessed February 3, 2023)

Emre Karakoç graduated from Sakarya University Computer Engineering Department in
2012. At the same time, he completed her master's degree on Computer and Informatics
Engineering at Sakarya University in 2016. He has been actively developing software since
2012 and took part in various IT sectors. His interests are IOT, Blockchain, Wireless Sensor
Networks, Software Defined Networking and Blockchain technology. He completed his
doctorate in 2021.

Celal Çeken received his MSc and PhD in Computer Science from University of Kocaeli,
Turkey in 2001 and 2004, respectively. His current research interests include Wireless Sensor
Networks, Internet of Things (IoT), IoT Data Analytics, Software-Defined Networking and
Secure Software Development.

https://www.trufflesuite.com/docs/truffle/overview
https://www.trufflesuite.com/docs/ganache/overview
https://web3js.readthedocs.io/en/v1.3.0/
https://en.wikipedia.org/wiki/MetaMask
https://spring.io/projects/spring-boot
https://ipfs.io/
http://gavwood.com/paper.pdf

