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Abstract 
 
The rapid evolution of the IoT has paved the way for new opportunities in smart city domains, 
including e-health, smart homes, and precision agriculture. However, this proliferation of 
services demands effective SLAs between customers and service providers, especially for 
critical services. Difficulties arise in maintaining the integrity of such agreements, especially 
in vulnerable wireless environments. This study proposes a novel SLA management model 
that uses an SDN-Enabled WSN consisting of wireless nodes to interact with smart contracts 
in a straightforward manner. The proposed model ensures the persistence of network metrics 
and SLA provisions through smart contracts, eliminating the need for intermediaries to audit 
payment and compensation procedures. The reliability and verifiability of the data prevents 
doubts from the contracting parties. To meet the high-performance requirements of the 
blockchain in the proposed model, low-cost algorithms have been developed for implementing 
blockchain technology in wireless sensor networks with low-energy and low-capacity nodes. 
Furthermore, a cryptographic signature control code is generated by wireless nodes using the 
in-memory private key and the dynamic random key from the smart contract at runtime to 
prevent tampering with data transmitted over the network. This control code enables the 
verification of end-to-end data signatures. The efficient generation of dynamic keys at runtime 
is ensured by the flexible and high-performance infrastructure of the SDN architecture.  
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1. Introduction 

Internet of Things (IoT) offers new opportunities for businesses and individuals in smart cities, 
enabling technological advancements in areas such as building energy management systems, 
smart factories, precision agriculture, e-health systems, and smart homes [1]. Some of these 
services are highly sensitive and critical to the customers' benefits. Potential problems that 
may arise during the service period can be predicted in advance, and appropriate actions can 
be taken to address them and inform the customer accordingly. These processes are regulated 
through contracts known as Service Level Agreements (SLAs) in the field of informatics. An 
SLA is an official agreement established through mutual understanding between the customer 
and the service provider. It can be independently defined and implemented in any customer 
case by utilizing IT network infrastructure. The SLA outlines the customer's expectations and 
their obligations towards the service provider. It also plays a crucial role in identifying key 
performance criteria for the service, such as network availability, jitter, bandwidth, latency, 
error rate, packet loss, etc. [2]. Additionally, the SLA can establish the necessary procedures 
for monitoring and reporting issues, specify time limits, and define appropriate penalties in 
case of violations [3]. It is of utmost importance that these matters are documented in SLAs 
so that, in the event of an SLA breach (e.g., failure to meet performance criteria), the customer 
can claim damages from the service provider as compensation. However, even if the terms of 
compensation are clearly stated in the SLA, the process itself can be uncertain due to potential 
dishonest actions by the involved parties [4]. When a customer submits a complaint regarding 
an SLA breach, they may need to provide supporting evidence (data) to validate their claim. 
Conversely, the service provider may be required to furnish evidence demonstrating their 
compliance with the SLA. Moreover, in case of disagreement, the customer may choose not 
to pay the previously agreed-upon amount for the purchased service, or the service provider 
may decide not to provide the defined compensation. 

The wireless network environment, on the other hand, can be more vulnerable to tampering 
and more challenging to manage, especially when it comes to sensitive data transmission over 
the air compared to the wired network environment. For example, in certain smart city 
applications that utilize a Wireless Sensor Network (WSN) with a dynamic infrastructure, real-
time data transfer may be requested by the customer. However, there can be unexpected issues 
such as energy depletion during runtime or network manipulation by attackers, given that the 
wireless network nodes are low-energy devices. As a result, users of the wireless network 
environment may require a network that meets their own standards or take responsibility for 
their own security measures. To meet these standards, the service provider managing the 
network infrastructure may need to regularly monitor network changes, handle all network 
layers simultaneously, and ensure traffic load balancing when new clients connect to the nodes 
[5]. However, customers may also request proof of the service reliability from the service 
provider. 
Considering the potential risks in the wireless environment, it appears that there may be more 

conflicts when using an SLA in the wireless network compared to the wired environment. As 
conflicts increase, both the service provider and the customer may have to undergo a more 
costly and bureaucratic process. They may need to rely on a Trusted Third Party (TTP) 
company, such as a bank or financial service, to facilitate the required payments. Therefore, 
there is a need for a cost-effective and straightforward solution that ensures accurate payment 
from both parties. We believe that blockchain technology, based on the principles of 
immutability and smart contracts (SC), can help address these issues by providing a reliable 
payment system and secure storage. In this regard, we propose a smart contract-Based Model 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023                      3005 

that safeguards the Wireless Network's Quality of Service (QoS) metrics used to express SLAs 
against tampering, utilizing a blockchain architecture like Ethereum, which offers a flexible 
development infrastructure. This eliminates the need for an intermediary institution to ensure 
service fees and compensation payments. Additionally, service providers will be able to 
demonstrate their reliability through the smart contract. We believe that this architecture holds 
promising potential.  
In this study, we have resolved the disputes that may arise between the parties during the 

execution of the SLA specific to the WSN environment and the situations that may cause loss 
of trust with a new model based on smart contracts. In this context, we propose a model that 
enables customers to monitor the promised network metrics and facilitates the automatic 
execution of the SLA payment and compensation process between the customer and the 
service provider without the need for a third party. We have ensured the immutability of SLA 
agreement rules by storing them in the blockchain network via smart contract in the model we 
propose. We also evaluated the possibility of end-to-end tampering of data between WSN and 
smart contract. In this context, we created a hash value with signature quality of the data 
transmitted from WSN nodes to the smart contract by using the private key and dynamic key 
binary keys generated on the smart contract. Thus, we have eliminated possible malicious 
attacks by passing the data transmitted to the smart contract and the signature value of the data 
through a control function. As a result, all SLA outputs are considered reliable for both the 
customer and the service provider according to proposed model. The Ethereum infrastructure 
and Solidity language are utilized for implementing the smart contracts. Contributions of this 
study can be listed as follows: 
 
• Although various models utilizing smart contracts have recently been proposed in the 

literature, to the best knowledge of the authors, the proposed model is the first study to 
demonstrate the feasibility of SLA management using smart contracts in WSN architecture. 
Blockchain is a hardware-intensive technology. Therefore, similar studies that employ 
smart contract-based SLA management in IoT have utilized single board computers or 
edge devices, as implementing this infrastructure on low-energy and low-performance 
wireless nodes can be challenging. In contrast to other studies, our proposed model 
developed a blockchain infrastructure specifically applicable to wireless nodes. 

• We have developed a smart contract-based model that enables control over network 
metrics in low-energy and performance wireless nodes. This flexible network structure 
formed by wireless nodes is expected to find applications in various areas of smart city 
applications, offering a fresh perspective. 

• While smart contracts provide immutability and impartiality to applications, concerns 
about third-party insecurity arise when data is sent to the smart contract. The proposed 
model overcomes this issue by implementing a dual-sided control mechanism, ensuring 
verifiability of the data and confirming the amount of data sent to the contract. This 
safeguards both the service provider and the customer against potential malicious incidents. 

• In this study, we have proposed a global ecosystem that encompasses all stages, from 
production to sales and from sales to customers, including the supply chain of Wireless 
Sensor Nodes. By incorporating the supply chain into the model, we establish confidence 
in the authenticity of the devices throughout the entire lifecycle, from the production phase 
to customer usage. 
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The remainder of the paper is organized as follows: Section 2 presents related studies found 
in the literature. Section 3 explains the underlying technologies and subsystems of the 
proposed architecture. The overall properties and design stages of the proposed model, along 
with related algorithms, are provided in Section 4. In Section 5, an example scenario of a smart 
building incorporating the proposed model is implemented, followed by performance 
evaluation. With the case study, the aim of this article was to experimentally demonstrate the 
feasibility of the proposed model and to emphasize the solution we produced against customer 
requests in the face of a possible scenario in the real world. The paper concludes with the final 
section, which offers concluding remarks and suggestions for further studies. 

2. Related Works 
There are several studies in the literature suggesting SLA management using blockchain and 
smart contracts. In a couple of studies [3][6], a model powered by smart contracts was 
proposed to automate the SLA monitoring process on Pop-Es (Point of Presence-ES / RNP), 
which offers various network maintenance, management, planning, and development services. 
The smart contract they developed was hidden on the Ropsten network, a public Ethereum 
Test Network. Additionally, they stored files with high storage costs from the blockchain 
network in a decentralized file system (IPFS - Interplanetary File System) within their 
proposed system. Another study developed an Ethereum-based smart contract that automates 
the potential compensation process between the customer and the service provider [7]. Their 
proposed model required both the customer and the service provider to agree to the terms of 
the SLA included in the smart contract from the outset and deploy it onto the blockchain 
network. In this study, the authors simulated SLA conditions by using response times based 
on a php site hosted on a test web server. 

A different framework for managing smart contracts and dynamic SLAs in a distributed 
manner involves the management of data collection and verification, as well as changes in 
network quality and the service payment system [8]. The authors utilized two different 
networks: off-chain and blockchain. The former was employed for computationally intensive 
tasks related to SLA management, while the latter was used for executing smart contracts. 
Building upon previous work [9], they introduced a decision-making structure by 
incorporating Oracle DB into the SLA application. In another study, the authors proposed 
using smart contracts instead of a secure intermediary platform for managing SLAs related to 
cloud computing communication standards [10]. They also addressed the challenge of 
verifying the correctness of data before recording potential violations in the blockchain. To 
address this, they proposed a witness model based on game theory, wherein witnesses were 
committed to receiving a specific fee as an incentive to ensure their credibility. The results of 
another study [11] indicated that centrally managed smart contracts were susceptible to 
manipulation, thereby compromising accessibility and data integrity. In response, the authors 
designed a decentralized approach where smart contracts could be grouped, and common 
variables or data could interact based on collectively determined shared values. They proposed 
a consensus mechanism utilizing asynchronous voting to achieve consensus among multiple 
members, and when a sufficient number of votes were received, consensus was reached. This 
approach aimed to ensure the reliability of data transmission between the client and the smart 
contract. Lastly, a similar study argued that managing the compensation process of Service 
Level Agreements (SLAs) is a complex and bureaucratic task [12]. They emphasized the 
expenditure of capital and effort in resolving breaches that occur within launched SLAs, with 
transactions typically conducted manually. As a solution, they employed smart contracts for 
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managing SLA violations due to their reliable structure that minimizes the need for third-party 
intervention. 

Blockchain and smart contracts have been utilized in several studies for network slicing and 
channel allocation management. In [13], the authors assert that the inherent features of 
blockchain can support various processes in the top-tier level of 5G network slicing 
management. They explain how the system can serve as a manageable platform for virtualized 
network functions in 5G using blockchain and smart contracts. Similarly, another study 
proposed a novel network slicing technology called NSB chain, which leverages blockchain 
to meet the requirements of new business models without relying on traditional network 
sharing agreements [14]. In this model, smart contracts are employed to automate and scale 
the allocation of network resources among tenants. Addressing possible security issues in 
spectrum distribution, another study [15] emphasized the need for a reliable intermediary to 
safeguard the security and privacy of operators' spectrum sharing. To address this, they 
introduced a framework called Multi-OPs Spectrum Sharing (MOSS), which leverages smart 
contracts to provide an auction and marketplace infrastructure, enabling independent spectrum 
sharing among wireless networks.  

In the literature, there are studies that employ smart contracts for authentication and data 
sharing management in the IoT network. One of these studies proposed the creation of a unique 
and global digital identity for IoT devices throughout their lifecycle, which is stored in the 
blockchain network [16]. Another study focused on using smart contracts to facilitate 
transaction coordination and automate monetary transactions between IoT devices [17]. 
Similarly, it was highlighted in a study that access management in IoT systems should be 
distributed efficiently when multiple IoT devices are connected, and a scalable architecture 
based on blockchain and smart contracts was proposed to address this challenge [18]. Another 
study adopted a similar approach, introducing a multi-tier management mechanism consisting 
of hub-based and pool-based layers to reduce smart contract processing costs in the 
management of numerous IoT devices [19]. 

A data lease system utilizing smart contracts was proposed in previous works [20]. The 
authors employed smart contracts and blockchain as an alternative to traditional models, 
aiming to enhance the data integrity and security requirements. Another study introduced a 
model based on smart contracts that incorporates Access Control Contracts (ACC), Judge 
Agreement (JC), and Registration Agreement (RC) to establish distributed and reliable access 
control for IoT systems [21]. ACC manages dynamic access permissions by employing 
authentication methods and defined rules. JC receives and evaluates misconduct information 
(e.g., too many erroneous entries) from ACCs and applies a behavioral assessment 
methodology, imposing penalties if necessary. This contributes to the functioning of ACCs. 
RC records the evaluation outputs of ACC in their respective smart contracts. In a different 
research study, a smart contract-based smart home system model was proposed where data 
from IoT sensors in emergency situations is transmitted to the Home Service Provider (HSP), 
which is also developed based on smart contracts [22]. The researchers utilized the meteor 
framework for communication between the HSP and the host, implementing One Time 
Password (OTP) as a measure to protect against DDoS attacks and other types of security 
threats. Another study addressing sensor data emphasized the need for a trusted third party to 
ensure the security and traceability of sensor data in IoT systems [23]. The proposed solution 
involved a smart contract and a DLT-based model to establish this trust. They developed a 
decentralized application (DApp) where only the checksum values of the data from the sensors 
could be verified. In the context of the sharing economy, a different approach to smart contract-
based IoT has been proposed [24]. While many sharing economy platforms implement rating 
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systems to provide reliability, individual risks still exist even if users present a reliable profile. 
Therefore, the authors argue that utilizing the decentralized structure of smart contracts is a 
reasonable approach to provide reliable infrastructure for the sharing economy. They applied 
the SLA concept by developing an exemplary model for smart contracts in the sharing 
economy, automating the SLA specifications and the SLA life cycle, and ensuring 
transparency of all rules. 

While some studies guarantee violations to be transferred to the smart contract without 
tampering, they are quite complex in terms of applicability. Some studies in this conjuncture 
have provided the opportunity to rent the recorded data later. In this case, it will not be possible 
for the consumer to meet the real-time data need. In addition, since blockchain technology 
includes high performance computations, it is very difficult to apply to low energy devices 
such as sensor nodes [1]. For this reason, a single board computer such as Raspberry Pi has 
been used in almost all IoT-based studies. Researchers can test their algorithmic methods on 
these small computers which are practical for fast demonstration that they expect. 
Unfortunately, although these approaches are theoretically possible, they cannot be applied in 
real-world systems such as mesh networks formed only by wireless sensors. Thus, our study, 
unlike other studies, has modeled an SDN-Enabled WSN consisting only of wireless sensors 
in order to show that the smart contract can be applied in a non-complex way on the WSN. 

3. Background 

3.1 SLA (Service Level Agreement) 
A Service Level Agreement (SLA) is an agreement between the service provider and the 
customer that includes service qualifications. These qualities determine the quality standards 
of the service provided by the service provider to the customer. Criteria such as the nature and 
quantity of services provided under an SLA, backup, support, service delivery time and 
problem resolution times may be included to service qualifications. In the proposed model 
architecture, we deployed a WSN structure, therefore, some performance metrics related to 
WSN have been considered when building our model. Some of the WSN parameters that can 
be used for SLA contracts are as follows [25]. 

 
• Service availability 
• Down-Time 
• Network Failure Rate 
• Measurement Period 
• Latency 
• Number of Nodes in Network 
• Energy consumed 
 

In the model we propose, we establish an infrastructure that enables the control of these 
parameters. If the customer desires, they can include the specified parameters in the SLA 
Contract. Furthermore, SLAs encompass various stages, forming the SLA life cycle. Fig. 1 
illustrates the life cycle of an SLA and indicates which stages are covered by our proposed 
model. Our model consists of 5 stages, including the following: SLA definition, acceptance of 
the SLA, violation monitoring, termination of the SLA, and enforcement of penalties. In our 
proposed model, it is the customer who determines the criteria, and if the service provider 
agrees to the conditions set by the customer, the SLA smart contract is created. The creation 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 11, November 2023                      3009 

of the smart contract is the responsibility of the service provider. Once the customer approves 
the contract, the process commences. At regular intervals during operational hours, the quality 
of data transfer in the wireless network is checked to ensure it surpasses the specified threshold 
values. These checks are recorded, and upon completion of the data transfer, the penalty fee 
for total violations is calculated and returned to the customer, thereby automating the SLA life 
cycle. 

 

 
Fig. 1. SLA Life Cycle for The Proposed Model 

 

3.2 SDN-Enabled WSN Architecture 
In this study, we utilized a WSN with SDN capability, which was modeled using Riverbed 
Modeler Simulation Software. Further information about this architecture can be found in [26], 
[27], and [28]. The SDN-enabled WSN comprises low-energy nodes (ED) that can function as 
sources, destinations, or routers. Additionally, the network includes another node type called 
SDN Controller (SDNC), responsible for control and management operations, and equipped 
with a Dijkstra's-based path discovery mechanism. One of the primary tasks of the SDNC, 
which possesses all the network intelligence, is to determine the optimal path between the 
source and destination by considering the remaining energy of the nodes along the path and 
the Signal-to-Noise Ratio (SNR) of the neighboring nodes. The low-energy nodes are 
equipped with an application layer, enabling them to act as Sinks and forward incoming data 
to the internet environment. The WSAN Flow Protocol, extensively described in [27], 
facilitates control messaging between the SDNC and ED nodes. 

3.3 Ethereum and smart contracts 
The blockchain system, initially introduced by Satoshi Nakamoto in 2008 as the architecture 
for the Bitcoin cryptocurrency [29], is a cryptographic proof-based electronic payment system 
that enables direct transactions between two parties without the need for a trusted third party 
[29]. Blockchain can be conceptualized as a ledger where records are organized into time-
stamped blocks, each having a unique hash code. Each block contains the hash code of the 
previous block, creating a chain of blocks [30]. When a new block is added, the node 
responsible for its completion notifies all other nodes, and the mapping is finalized. The 
distributed nature of the system ensures that attempts to attack the system in one or multiple 
locations do not compromise its reliability. Therefore, mutual trust between nodes in the 
blockchain is not required. Smart contracts, stored immutably on the blockchain network, are 
code snippets that execute within the network [31]. These code snippets are secured by the 
blockchain network and are resistant to external manipulation. Smart contracts can store data, 
execute decision-making processes, transfer money to other accounts, and interact with other 
contracts [18]. Smart contracts are permanently established on the blockchain by their owners. 
Numerous cryptocurrency platforms utilize blockchain infrastructure, with Ethereum being 

one of the most prominent examples. Ethereum is an open-source cryptocurrency architecture 
based on blockchain that incorporates the smart contract protocol. It supports an updated 
version of the blockchain consensus protocol through transaction-based state transitions [32]. 
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Smart contracts in Ethereum are executed on the Ethereum Virtual Machine (EVM), a Turing-
complete software operating within the Ethereum network. EVM enables the execution of 
programs written in any programming language and provides sufficient time for their 
execution. Each transaction operation on Ethereum incurs a specific operation fee known as 
'Gas'. Therefore, when designing an algorithmic method within a smart contract, it is crucial 
to optimize transactions and variables to minimize transaction fees. Moreover, Ethereum 
allows developers to create and deploy decentralized applications (DApps). DApps offer 
significant advantages by eliminating intermediaries in various industries, thanks to the 
Ethereum platform. 

4. The Proposed SLA Management Platform and Algorithms 

4.1 System Overview 
The model we propose encompasses the manufacturer, service provider, and customer, 
covering the entire process from the production to the sale of all nodes that will constitute the 
Wireless Sensor Network (WSN). In general, the process can be summarized as follows: The 
manufacturer produces devices that incorporate private keys, and each device produced is 
transferred to a specific smart contract defined by the manufacturer, with the keys stored in 
the blockchain. The service provider purchases these devices and performs customer-specific 
installations using them. The service provider establishes specific Service Level Agreement 
(SLA) terms for each customer, and once both parties agree to these terms, they are 
incorporated into the smart contract and deployed onto the blockchain network, initiating the 
smart contract. Once the data reaches the End Device, which we refer to as the End Device, it 
is transmitted to the smart contract Helper (SCH) along with certain parameters.  
 

 
Fig. 2. Components of the proposed SLA Management Platform 
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SCH forwards the incoming data and parameters to SSC (SLA smart contract). SSC initially 
verifies the incoming data using MSC. MSC validates the verification process using the 
previously reported private keys from the manufacturer. If the verification process is 
successful, SSC checks whether the promised network metrics are being met. In case of a 
violation, the penalty amount specified in the SLA is deducted from the deposit. Additionally, 
if the service provider and customer agree, the data can be asynchronously transmitted through 
SCH to a data warehouse specified by the customer. The proposed model aims to detect and 
control the data being transmitted in accordance with the contract, while leaving the data 
storage methodology to the discretion of the developers. In the proposed model, the process is 
divided into four stages, as shown in Fig. 2. 

4.2 Manufacturer Stage (1) 
In this process, the manufacturer plays a crucial role in the proposed model. The manufacturer 
is responsible for ensuring the reliability of the devices, which are the sensing nodes in the 
WSN. To achieve this, the manufacturer generates a private key for each device and securely 
stores them in a tamper-proof memory section within the manufactured devices. The main 
purpose of these keys is to verify the accuracy of all the information coming from within the 
network. The manufacturer stores these device-specific keys in the blockchain network using 
a MSC (manufacturer smart contract) that is created and deployed exclusively for each 
manufacturer (Fig. 2, step 1.2). The initiation of these smart contracts is solely performed by 
the manufacturer. The MSC includes the production date of the device, the global key (device 
serial number), and the private key mentioned earlier. This enables anyone who purchases or 
rents the device to easily verify its authenticity through the MSC. Once the manufactured 
devices are registered with the MSC, they are ready for sale (Fig. 2, step 1.1). 
While the private key produced by the manufacturer is stored in protected memory to prevent 

tampering, it is important to consider the potential disclosure of confidential information in 
the hardware due to advancing technology. To mitigate such security vulnerabilities, we adopt 
a dynamic key formation strategy leveraging the flexible structure of the SDN-Enabled WSN 
described in Section 3.2 The SDN Controller (SDNC) within the centralized device in the 
WSN possesses all the control functions and has knowledge of all the nodes in the network. In 
the SDN-Enabled WSN structure, when the SDNC receives a connection request from the 
source node, it determines the optimal path between the source and destination by considering 
the energy consumption ratio and RSSI metrics. The SDNC stores this path in its flow table, 
which consists of a group of flow entries that specify the actions to be taken by each node on 
the path for incoming packets. In our model, each flow entry also includes a field to store the 
corresponding dynamic key, as illustrated in Fig. 3. Subsequently, the SDNC sends each flow 
entry to the respective nodes on the path. This procedure is repeated whenever a new route is 
determined. 

 
Fig. 3. Transmitting Dynamic Key to End Device via SDN Flow Table 

 



3012                                                                                                                          Karakoç et al.: Secure SLA Management Using  
Smart Contracts for SDN-Enabled WSN 

In the model, SDNC requests key generation from MSC whenever a route change is required 
within the network. Route changes may occur due to attacks or unexpected failures within the 
network, which we consider as a critical situation requiring key change. When a route change 
occurs, SDNC receives a new random key from MSC and transmits it to the source node. The 
source node generates a new secret key (ℎs) by combining the incoming random key with the 
private key stored in its own memory. Using this secret key, the control code is created by 
hashing the data and other relevant information (1). The procedure for generating random key 
on the MSC is depicted in Algorithm 1. Symbols and their definitions are shown in Table 1.  
 

Table 1. Definiton Table 
Symbol Definiton Symbol Definition 
𝑘𝑘ℎ keccak256 func                               ℎ𝑑𝑑 hash value of data 
ℎ𝑑𝑑𝑑𝑑 hash value of data created date ℎ𝑑𝑑𝑑𝑑 hash value of data arrived 

date 
ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  hash value of constant value ℎ𝑠𝑠 hash value of secret key 

of node 
𝑐𝑐 control code 𝑔𝑔𝑔𝑔 global key of node 
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 The parent object where keys such as 

hs, gk belonging to the relevant node 
are stored in the contract 

⊕ XOR operation 

𝑆𝑆 SLA information object  of customer 
in the contract 

𝑆𝑆𝑐𝑐𝑐𝑐  compensation data 
latency limit defined at 
current SLA 

 
Algorithm 1. MSC – Key Generation Algorithm For Node 
Input:    𝑔𝑔𝑔𝑔   
Output: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘 
1:    𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 
2:        𝐼𝐼𝐼𝐼 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔 
3:             𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘 =  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() 
4:             𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 = 𝑘𝑘ℎ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 ⊕  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘) 
5:             𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘  
6:        𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 
7:    𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
8:    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

 
The rand() function is developed using the Solidity language and generates bytes32 values. 
This function is on the contract as a private view method and the return value is obtained 
through variable parameters of the Ethereum network such as block.timestamp, 
block.difficulty, msg.sender, now. Furthermore, all information exchange between SDNC and 
MSC takes place via SCH. 

4.3 Service Provider Stage (2)  
The service provider purchases the manufactured devices from the contracted manufacturer. 
The purchase process occurs exclusively through the previously established MSC by the 
manufacturer. The service provider specifies the desired brand and number of devices they 
want to purchase through the smart contract. The manufacturer approves the service provider's 
request (Fig. 2, step 1.3) and adds the private keys of the purchased devices by the service 
provider to a dedicated list on the MSC (Fig. 2, step 2.1). The main objective here is to ensure 
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the protection of the customer and service provider who will use the devices sold by the 
manufacturer. 
In the proposed model, the SLA conditions requested by the customer are adapted and defined 

by the service provider (Fig. 2, step 2.2). When creating an SSC, the service provider must 
adhere to specific conditions imposed by the manufacturer. This means that each SSC needs 
to implement a smart contract interface specified by the manufacturer. In other words, the 
development of an SSC must be based on a template provided by the manufacturer. In the 
software realm, this approach aligns with object-oriented programming, where the template 
corresponds to an interface or an abstract class. This approach restricts the developer from 
deviating beyond certain structural requirements. In the proposed model, the manufacturer-
imposed interface must satisfy the following conditions. 
 

• It will have a method to verify data by connecting to MSC. 
• Must take 6 parameters. 
• Must have 1 byte return type. 

 
The Solidity code created under these conditions is as Fig. 4. 
 

 
Fig. 4. Solidity Code Interface For SSC 

 
These conditions have been accepted as a standard specific to the model we propose. By 
accepting this standard, the smart contract is created and deployed together with the SLA terms. 
In addition, in our proposed model, the service provider must create and manage an 
intermediate service layer, which we call SCH, in order for the data coming over the Wireless 
Network to reach the smart contract. The service provider undertook the installation of the 
Wireless Network and the SCH infrastructure in the model we recommended. 

4.4 Customer Stage (3) 
The customer is the party which is requesting service; therefore, it usually contracts with the 
service provider that can best meet its needs. After the customer agrees with the service 
provider on the terms of the SLA, it approves the SSC created by the service provider (Fig. 2, 
step 3.1) and the deposit amount determined according to the terms of the SLA is transferred 
to the service provider's account. Thus, the service provider completes the setup. 

4.5 Production Process Stage (4) 
The details of the whole process are shown on the sequence diagram given in Fig. 5. In this 
stage, the data coming from the WSN is transferred to the SCH via TCP ports. Data is 
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transferred out of the wireless network over the sink End Device as stated earlier. 

  
 

Fig. 5. Sequence Diagram of SDN-Enabled WSN SLA Ecosystem 
 
In order to initiate data transfer over the Wireless Sensor Network, the SDNC must determine 
the optimal path between the source and destination. Once the data transmission commences 
(Fig. 5, step 4.1) and the data reaches the sink End Device, the sink appends certain parameters 
to the data to facilitate its delivery to the SCH. These parameters include the global key, 
network metrics, and control code specific to the End Device. Together with the data, these 
parameters form the frame depicted in Fig. 6. The network metrics can be adjusted to meet 
different requirements based on criteria such as downtime and energy consumption. In the case 
study presented in Section 5, we have selected the delay time as the criterion for mesh metrics. 
Thus, the parameters for this criterion consist of the data creation time and the arrival time at 
the End Device. 
 

 
Fig. 6. SDN-Enabled WSN - SLA Data Frame 

 
The control code is generated by applying specific processes to the data and network metrics 
using the private key stored in the secure memory of the End Device. In our proposed model, 
control code generation and verification occurs solely on the node and the MSC to ensure data 
transmission reliability. Furthermore, only the manufacturer is responsible for determining the 
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control code generation method and it remains undisclosed to others. We provide flexibility 
for manufacturers in this aspect. In our model, the parameters listed in Table 1 are used for 
the generation of the control code. We perform an XOR operation on the parameters (ℎ𝑥𝑥), 
followed by passing the obtained result through the keccak256 function to derive the control 
code (1). 
 

𝑘𝑘ℎ(ℎ𝑠𝑠 ⊕ ℎ𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕ ℎ𝑑𝑑𝑑𝑑 ⊕ ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑐𝑐      (1) 
 
The SCH strictly records in IPFS the network measurements contained in every data it receives 
(Fig. 5, steps 4.2 and 4.3). SCH also transmits incoming data to SSC for violation control (Fig. 
5, step 4.4 and 4.5). SSC sends the global key, network metrics and control code parameters 
in the incoming data to the MSC (Fig. 5, step 4.6), because it does not know the private keys 
of the devices. As we mentioned formerly the manufacturer registers all private keys to MSC 
during the production phase, with reference to their global keys. As a result, SSC definitely 
performs data verification over MSC. The MSC control code verification mechanism is shown 
in Algorithm 2. The control code verification function of the MSC is designated as a view 
function in Solidity, ensuring that it operates without gas consumption. Additionally, gas-free 
functions like keccak256 and abi.encodePacked are employed. In essence, no gas expenditure 
is required for these operations. In the model we recommend in this respect, the service 
provider or customer does not have to pay any fees for this transaction. 
 

Algorithm 2. MSC Algorithm – Control Code Verification 
Input:    𝑔𝑔𝑔𝑔, ℎ𝑑𝑑 ,ℎ𝑑𝑑𝑑𝑑 , ℎ𝑑𝑑𝑑𝑑 , 𝑐𝑐   
Output: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
1:   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 
2:       𝐼𝐼𝐼𝐼 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑔𝑔𝑔𝑔  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔 
3:           𝐼𝐼𝐼𝐼 𝑘𝑘ℎ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑠𝑠 ⊕  ℎ𝑑𝑑 ⊕  ℎ𝑑𝑑𝑑𝑑 ⊕  ℎ𝑑𝑑𝑑𝑑 ⊕𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐 
4:               𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  
5:           𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 
6:       𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 
7:    𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
8:    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
In the control code verification mechanism, the global key parameter is first searched in a Map 
located within the MSC. If a match is found, the private key associated with the corresponding 
list item is retrieved. Subsequently, this specific key and the incoming parameters undergo the 
keccak256 hash process, and the resulting code is compared with the control code. If the 
comparison yields a match, the SSC returns true; otherwise, it returns false (Fig. 5, step 4.7). 
The SSC also increments the verification or error counter based on the response. As a result, 
even if any malicious behavior occurs during the IPFS recording phase, the total number of 
data confirmations via the SSC can be compared with the IPFS file system during monthly 
reporting. Any discrepancies can lead to the cancellation of the SLA. 
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Algorithm 3. SSC Algorithm – SLA Check Data 
Input:    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔, ℎ𝑑𝑑 , ℎ𝑑𝑑𝑑𝑑 ,ℎ𝑑𝑑𝑑𝑑 , 𝑐𝑐   
Output:  
1:    𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑆𝑆 
2:        𝐼𝐼𝐼𝐼 𝑆𝑆𝑖𝑖𝑖𝑖  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 2 
3:            𝐼𝐼𝐼𝐼 𝑆𝑆𝑐𝑐𝑐𝑐 <  (ℎ𝑑𝑑𝑑𝑑 −  ℎ𝑑𝑑𝑑𝑑) 
4:                𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
5:            𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 
6:        𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 
7:    𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

 
The SSC's data control mechanism is depicted in Algorithm 3. The algorithm functions as 
follows: the MSC data validation function is invoked with the incoming parameters. If the 
return value is true, the algorithm proceeds. Utilizing the slaId parameter, the current SLA 
object is retrieved from the SLA Map list. A predefined acceptable delay time is obtained from 
the corresponding SLA object. This time is then compared with the difference between the 
creation time and arrival time of the incoming data. If the difference exceeds a certain 
threshold, the calculatePenalties function is invoked (Fig. 5, step 4.8). Within the 
calculatePenalties function, if the breach period for the current compensation exceeds the 
acceptable time, penalty transactions are executed, resulting in the transfer of penalty fees from 
the SSC balance to the client. Upon the expiration of the SLA lifetime (Fig. 5, step 4.9), the 
remaining amount in the SSC balance, after the penalty transactions, is transferred to the 
service provider's account (Fig.  5, step 4.10). Finally, the total amount of penalty transactions 
is sent to the customer's account (Fig.  5, step 4.11), thereby completing the process. 
 
We conducted a comparison of the most relevant models recently proposed and the model we 
proposed over some metrics and summarized this in Table 2. 
 

Table 2. Comparison between proposed and most related recent models 
Related 
model 

Infrastructure SLA data 
(network metric)  
generation place 
for smart 
contract 

Blockchain 
network 
location 

Dynamic 
SLA 

Blockchain 
Connector 

Battula et 
al. [33] 

Fog computing Fog Device Ethereum Yes Smart Oracle 

Alzubaidi 
et al. [34] 

Edge 
Computing 

IoT Service 
Provider (server) 

Hyperledger 
Fabric 

No Smart Oracle 

Hang et al. 
[24] 

IoT Third-party app Hyperledger 
Fabric 

No Hyperledger 
Composer 

Uriarte et 
al. [9] 

Edge computing  Third-party app Ethereum Yes Smart Oracle 

Kochovski
et al. [35] 

Edge computing Fog/Edge Devices Chain Link-
Ethereum 

No Smart Oracle 

Zhou et al. 
[10] 

Cloud Cloud Service Ethereum No Smart Oracle  

Proposed 
model 

SDN-enabled 
WSN 

WSN Node Ethereum No SCH 
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In most of the similar studies, they managed IoT devices through Edge, Fog or third party 
applications. Therefore, even if there is no decision maker for SLA violation detection, SLA 
data (network metrics such as latency) sent to the smart contract are generated from these 
middleware devices or third party applications. The installation and management of these 
devices is done by the service provider. In addition, the applications running on these devices 
are usually under the control of the service provider. There may be an opportunity for a service 
provider looking to turn SLA rules in their favour. Therefore, the fact that a party to the 
agreement manages these devices, which are critical for SLA, may leave a question mark for 
the customer. 
The main difference between the proposed model and other studies is that security has a 

reliable method from wireless node to smart contract, and only strictly network metric data is 
generated and secured in the wireless node. Therefore, a control code signature that does not 
accept changes is transmitted directly to the smart contract. SCH acts only as a bridge. The 
service provider cannot interfere with the data or the device generating the data. The security 
analysis for the proposed model is detailed in Section 5.5. 

5. Case Study 

5.1 Technical Overview 
We identified and applied a case study to demonstrate the feasibility of the proposed model 
and to obtain debatable results. We have specified all the components and applications 
required for simulation in section 5.2. In the context of the case study infrastructure, we 
utilized the wireless sensor architecture previously developed in our work [1] as the 
fundamental framework. In the case study, we examined a company that does genetic research 
as a customer, and we made a sample service provider the counterparty to make an SLA 
agreement with the customer. The customer has sensitive sensor data and there are some SLA 
quality service conditions determined by the customer. In this context, we identified the 
customer's two requests and examined the potential of our proposed model to fulfill these 
requests.  
• SLA rules work without exception and leave no room for doubt.  
• Ensure that data (network metric) is transmitted from the wireless sensor node to the SCH 

and from there to the SSC without any manipulation along the transmission line. 
In the model we proposed for the first request of the customer, we ensured that the SLA rules 
are immutable by storing them on the smart contract. In addition, with the SSC we have 
developed, the relevant fines are transferred to the customer's account without exception at the 
time of working. Through the control code verification procedure we have devised, network 
metric values are safeguarded against any alteration. Thus, any external factor cannot violate 
the SLA rules by tampering with the network metric values along the transmission line and 
cause a monetary manipulation. In section 5.3, we concretely presented the SLA metrics and 
explained how we did the calculations. We showed the model on an example figure. In section 
5.3, we discussed the applicability of the model with the experimental results. We have 
graphed the critical energy efficiency and time delay results for low-power wireless nodes. For 
the second request of the customer, we made a security analysis of the model in section 5.5, 
examined the possible threats on a scenario basis and expressed how we overcome these 
threats. 
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5.2 Platform Components 
5.2.1 WSN Simulation Model 
SDN-Enabled WSN structure in the platform is modeled and simulated using Riverbed 
Modeler Software. The WSN has 10 EDs and 1 SDNC device in the simulation scenario, as 
shown in Fig. 7. 
  

 
Fig. 7. Simulation model of SDN-Enabled WSN 

  
MICAz node energy consumption parameters are used in the simulation for a more realistic 
performance evaluation. In addition, similar working conditions are chosen for all scenarios 
to obtain a consistent performance comparison. Relevant simulation parameters are tabulated 
in Table 3. 
 

Table 3. Relevant simulation parameters  
 Name Value 

Device settings for 
both the proposal 
and ZigBee-based 

WSAN 

Data Rate 250 kbps 
ED status transmission period 25 s 

Initial energy 5 J 

Channel model Free‐space propagation 
model (LoS) 

Power threshold −76 dBm (80 mW) 
Battery parameters 
(Micaz mode) for 
both the proposal 
and ZigBee-based 

WSAN 

Transmission mode (0 dBm) 17.4 mA 
Receive mode 27.7 mA 

Idle mode 35 µA 

Sleep mode 16µA 

5.2.2  Smart Contract Tools 
• The technologies we utilize to develop smart contract in the proposed model are listed 

below. 
• Solidity (Ethereum VM Language): Solidity is an object oriented programming language 

used to develop smart contracts [36]. It is used on many blockchain platforms, especially 
Ethereum. Thus, the behavior of the accounts can be changed [37]. The developed code 
runs on EVM after it is compiled. 

• Truffle (smart contract Test and Deploy Framework): Truffle is a developer environment 
that enables simple and easy testing of Ethereum smart contracts after they develop them 
[38]. 
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• Ganache (smart contract Local VM): Ganache creates a virtual Ethereum blockchain for 
the smart contracts developed [39]. It also testing the code that is developed by opening 
new accounts on this virtual blockchain. 

• Web3js (smart contract Java Class Helper): web3.js is a program library that allows you 
to communicate with a local or remote Ethereum network using HTTP, IPC or WebSocket 
[40]. 

• MetaMask (Blockchain Account Panel - Google Chrome Plugin): MetaMask is a 
cryptocurrency wallet developed as a browser extension to communicate with the 
Ethereum network [41]. Thanks to a compatible browser, users can manage their own 
accounts, and send or receive ETH with this add-on. 

5.2.3  Smart Contract Helper (SCH) 
smart contract Helper is a platform based on Spring Boot [42] that serves as a mediator 
between smart contracts and the SDN-Enabled WSN. It facilitates the communication between 
the SDN-Enabled WSN and the smart contracts deployed on the blockchain network. The 
responsibility for managing this platform lies with the service provider, who is tasked with 
ensuring its continuous operation. The helper leverages the Web3.js Java library to establish 
communication with the smart contracts. Additionally, several RESTful POST services have 
been developed to handle various tasks within the platform. 

5.2.4  IPFS (The InterPlanetary File System) 
IPFS can be defined as a distributed file system that generally enables data storage and sharing 
on a distributed peer- to-peer network [43]. In the IPFS system, a unique key code is given to 
each file and all of its blocks. The nodes in the network store the content being interested and 
some indexing information related to other nodes' content. Thus, a secure web environment 
against deletion is provided. 

5.3  Experimental Model and Assumptions 
Table 4 includes the operating parameters and assumptions of the experimental study 
employed to obtain the performance of the proposed SLA management platform. Fig. 8 
illustrates the SDN-Enabled WSN topology that the service provider establishes for XY 
company. 
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Table 4. Case Study for Proposed 
Model 

Customer 
XY Company 
Conducting 
Genetic Research 

Network 
Infrastructure 

SDN-Enabled 
WSN (Fig.7) 

Sensor 
Measurement 
Period 

2 sec 

Compansation 
Period 300 sec (150*2) 

Acceptable 
Average 
Transmission 
Time 

0.194 sec 

Targeted 
Transmission 
Delay Rate  

< %5 

Customer 
Deposit 30 ETH 

Penalty Per 
Compensation 
Period 

0.1 ETH 

Simulation 
Time 30 min 

 

 
Fig. 8. SDN-Enabled WSN topology of the smart 

building in the case study 
 

 
In the presented case study, XY is a customer company engaged in genetic research. 
Temperature measurement plays a crucial role in their research, particularly in room number 
011. It is imperative to measure the temperature accurately and ensure uninterrupted data 
transfer to the central data servers. The primary criteria for this scenario are data continuity, 
immutability and speed. To meet these requirements, XY establishes an SSC based on 
blockchain assurance with a network infrastructure provider (Service Provider). The SSC 
outlines the terms and conditions for the data transmission process, specifically stating that 
sensor data must be transmitted to the central server before it drops below a predefined 
threshold. The client has the flexibility to define individual requirements for each research 
room. In the evaluation of performance, room number 011 is considered, taking into account 
the following conditions and assumptions; 
• The temperature values measured in Room 011 must be transmitted to the central server 

every 2 seconds. 
• If the customer accepts the contract, they are required to deposit a fee of up to 30 ETH. 
• The total packet delay is calculated for every 150 sensor data packets. 
• The maximum acceptable time for each data packet to reach the server is determined as 

0.253 seconds. To determine this value, the average data transmission times on and off the 
network were measured in a pre-scenario test simulation. In this simulation, a total of 900 
data packets were transmitted to the destination node. Fig. 9 illustrates the time-dependent 
graph showing the duration of packet transmission from the origin node to the destination. 
The average transmission time was calculated as 0.194 seconds, and a 30% deviation time 
was added to the average time to determine the acceptable time. 
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Fig. 9. Transmission Time 

 
The latency limit was set by the customer as 5%. In order to calculate actual delay rate, the 
total delay time is calculated (2). Then, the delay rate is calculated by using this obtained delay 
time (3). Calculation details are shown on below. 

 
{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} = {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} −
({𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶} + {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴} ∗ 150)      
                                                               
{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} = {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} − (300 + 0,253 ∗ 150)     (2) 
 
{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} = �{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇}

{𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇}
� ∗ 100                                 (3) 

 
Total transmission success will be calculated; if {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇} 
greater than five, penalty action {𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃} will be applied to the 
service provider. Since data delay is the main criterion in this scenario, the network metrics in 
Fig. 6 were determined as the in-network creation date of the data and the in-network arrival 
date of the data. 

5.4 Experimental Results and Discussions 
The simulation results of the WSN model in the proposed SLA management platform were 
obtained using a computer equipped with a 2.50 GHz i5 2450M processor and 4 GB of RAM. 
The simulation ran for 30 minutes, during which 900 temperature data points were transmitted 
from the source to the destination node as shown in Fig. 9. Upon receiving the data, the 
destination node adds certain parameters, including the global key, data creation date, data 
arrival date, and control code, before forwarding it to the smart contract Helper. The smart 
contract Helper then sends the incoming data to both IPFS and SSC. During each 
compensation period, which occurs every 5 minutes, the SSC calculates the delay. If the delay 
exceeds the predetermined value, penalty action is applied. The SSC verifies the correctness 
of the control code by transmitting it to the MSC. It is important to note that no faulty control 
codes were generated during the simulation. The initial balances in the customer, service 
provider, and SSC accounts are summarized in Table 5. 
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Table 5. Balance Initial Values 
of Customer, Service Provider 

and Contract Accounts 
Account Name Initial 

Value 
Service Provider 
Account 

5 ETH 

Customer Account 40 ETH 
SSC Account 0,5 ETH 

Gas Unit Fee = 20 Gwei = 
(𝟐𝟐𝟐𝟐 ∗ 𝟏𝟏𝟏𝟏−𝟗𝟗 𝑬𝑬𝑬𝑬𝑬𝑬) 

 

 
Fig. 10. Amounts of Gas Consumed for smart contract 

Processes 
 
The initial balance of the service provider is set as 5 ETH, which covers the transaction fee 
required to initiate the SLA on the smart contract. Similarly, the initial balance of the SSC is 
determined as 0.5 ETH to handle penalty transactions. To provide more detailed simulation 
results, high values are chosen for deposit and penalty fees. Fig. 10 illustrates the gas 
consumption of smart contract transactions received through Truffle. It is evident from the 
figure that the service provider consumes the highest amount of gas compared to other parties. 
This discrepancy arises from the fact that the service provider deploys the SSC. The gas 
consumption for SSC deployment is determined by variables defined in the contract for 
function content and storage of critical data. For instance, storing 32 bytes of data requires 
20,000 gas consumption [44]. Therefore, the deployment cost of the SSC is relatively high. 
The total gas consumption for SSC and MSC deployment is calculated as 1,790,881 (0.0358 
ETH). While the total gas consumption to approve the defined SLA in the customer SSC is 
83,091, the gas amount spent by the service provider to initiate this SLA is 385,103. 
Additionally, during the Check Data operation in the SSC, 33,974 gas is consumed to record 
violations, and another 33,974 gas is consumed to pay penalties to the customer. Ethereum 
imposes gas consumption for money transfers, where higher gas amounts lead to faster transfer 
processes on the network. In our simulation, the gas consumption for a money transfer is 
determined as 8,281. Fig. 11 illustrates the time-dependent graph of customer, service provider 
and SSC smart contract account balances during the SLA execution process. Upon SLA 
approval, the customer transfers 30 ETH to the SSC accounts. The total transmission time is 
monitored during six compensation intervals. The transmission times during compensation 
intervals 2 and 5 exceed the targeted time. As a result, in both compensation intervals, 0.15 
ETH is transferred from the SSC account to the customer's account. When the term is 
completed, the SLA is terminated, and the SSC transfers the remaining balance to the service 
provider. As depicted in the graph, the proposed model ensures that penalties for SLA 
violations at time t are promptly transferred to the customer's account. Upon the SLA's 
expiration, any remaining balance in the contract account is automatically transferred to the 
service provider's account. 
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Fig. 11. Time Based Change of Balance Values of Customer, Service Provider and Contract Accounts 

in Data Transferring and Verifying Period 
 
For the SDN-Enabled WSN in the case study, two different simulation scenarios are evaluated 
to investigate the effects of the developed models and algorithms. The first one, which is 
referred to as "Scenario 1", includes the sensor network without any SLA consideration. In 
contrast, the second one, which is referred to as "Scenario 2", has the proposed SLA-related 
modifications on the application layer of ED, which integrates the sensor network into the 
SLA management platform.  
 

 
Fig. 12. Total Energy Consumed for Proposed Model Enabled/Disabled 

 
  

Fig. 12 and Fig. 13 present the results of both scenarios. Fig. 14 displays the total energy 
consumption ratio of the SDN-Enabled WSN. It can be observed from the figure that the End 
Device (ED) in Scenario 2 consumes a total of 0.0043 Joules more energy compared to 
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Scenario 1. This difference is expected since the proposed SLA-related algorithms impose 
computational load on the system. Furthermore, when considering both results, there is no 
significant energy consumption observed on the last nodes. This is because the SDN controller 
(SDNC) performs the resource-intensive operations that require higher performance in the 
SDN-Enabled WSN architecture.  

 
Fig. 13. Data Transmission Delay Between End Device and SCH for Proposed Model 

Enabled/Disabled 
 
As a result, the EDs can conserve their energy, which is crucial for prolonging the network's 
lifetime [1] [26]. Another advantage of the SDN-Enabled WSN architecture for the proposed 
model is the quick transfer of statistics required for the SLA defined on the smart contract 
from the SDNC to the nodes, and subsequently transmitted to the smart contract Helper (SCH) 
through the last node. This enables fast and energy-efficient interaction with smart contracts. 
Fig. 13 illustrates the time taken to transfer SLA data from the End Device to the SCH, 
considering both scenarios. The results indicate that Scenario 2, with the proposed SLA 
extension, exhibits a greater delay compared to Scenario 1 due to the additional processing 
cost required for generating the SLA-related control code in the End Device. Furthermore, in 
terms of the sustainability of the proposed model, smart contracts' processing speeds should 
be stable and fast. Therefore, the verification of the control code, which constitutes the main 
workload in the smart contract, should be swift.  

 
Fig. 14. Processing Time of Algorithm-3 According to Enabled-Disabled State of Line 4 in 

Algorithm-3 
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Fig. 14 demonstrates the processing time of the code (Algorithm 3) that includes the SSC data 
control mechanism. It was previously mentioned that the SSC calls the MSC function (line 2 
of the code in Algorithm 3) to confirm the correctness of the received data. To assess the 
additional cost incurred by calling this action and determine if any unexpected delay would 
disrupt the system, we disabled this process and restarted the simulation. The results indicate 
that there was no significant change observed in the average time. This process took a 
negligible time of approximately 3,006 milliseconds. As a result, the data verification 
mechanism in the SSC introduces an extra delay of 0.75% during data transmission from the 
End Device to the SCH and increases the energy consumption ratio by 1.2% for the target 
node. Considering that these values are quite small, the additional cost of our security model 
can be neglected for many applications. 

5.5 Security Analysis of Proposed Model 
We have established the trust between the model intermediaries we recommend. However, to 
ensure this trust, it is possible to ensure that the SLA rules and network metrics are 
unchangeable on the blockchain and that the data is not manipulated throughout the 
transmission channel. We have demonstrated the feasibility of the proposed model through a 
comprehensive case study in previous chapters, complemented by a thorough security analysis. 
We tested the resilience of the model against threats over possible threat scenarios. Based on 
the case study shown in Fig. 8, we can examine the following threat scenarios. 

5.5.1  Threat Scenario 1: Unauthorized Node Tampering and Data Interference 
We assume that an unauthorized and malicious attacker in the building tampered with the 
nodes or tampered with the network, preventing data from reaching the End Device. In our 
previous study, we tested attack scenarios such as Wormhole attack, Sinkhole Attack and 
Black Hole Attack that cause data to move in different rotations or cause data to be destroyed, 
on the same infrastructure. We have used the model we developed in our previous study [1] in 
this working architecture as well. For such attacks, it has been simulated over OPNET on a 
scenario basis and it has been observed that the attacks made for the data transmitted from 
node to node in the WSN network are successfully prevented. 

5.5.2  Threat Scenario 2: Impersonate The SCH (Copycat Attack) 
The attacker could impersonate the SCH acting as the orchestrator between the WSN and the 
smart contract. For example, the attacker may want to transmit the temperature measurement 
values to the smart contract with different values through the copycat application. 
• In the model we proposed, the service provider is responsible for creating a specific smart 

contract instance for each customer. Therefore, the attacker must first know the 
application-specific smart contract account address. In case of incompatibility between the 
attacker account address and SCH, he will not be able to forward the data as he wishes. 

• Each contract has its own device and private keys and dynamic keys for each end-to-end 
data transmission at runtime. Therefore, if the application account address is captured, the 
copycat SCH can transmit its own generated data to the contract. However, the proposed 
model introduces Algorithm 2 as a safeguard. If the data does not match the control code 
signature value, it receives a rejection from the contract. With a certain number of 
rejections, the service provider will be able to understand that there is an attack on the 
network. The service provider can determine the relevant metrics for network intrusion 
detection. 
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5.5.3  Threat Scenario 3: Abuse of Responsibility 
In our proposed model, we stated that WSN architecture management and installation is a 
division of labor belonging to the provider. A vulnerability can occur if this responsibility is 
abused or installed in a way that is vulnerable to external threats. Especially in WSN, the 
change of the location of the nodes is an important criterion in terms of security. It is not 
expected that the position will change during operation. In our previous work, we have stored 
the route changes and node active/passive record keeping on the SDN Controller due to 
location change or other reasons. In addition, in this study, we ensured that the route changes 
are verifiable, and we made it mandatory to request a random key in the contract for situations 
that would require a route change. Network metrics and control packets are stored as read-only 
in the IPFS environment. Thus, the customer can examine such trust parameters or verify this 
data via MSC at the end of the day. 
 
The security analysis performed in potential threat scenarios highlights the robustness of the 
proposed model in mitigating potential risks and protecting data and network integrity. Thanks 
to the integration of lightweight cryptographic methodology, the model stands as a solid 
solution for security challenges in Wireless Sensor Networks. 

6. Conclusion 
Blockchain technology is experiencing daily growth in its widespread use, and it is interacting 
with various technologies to create new architectures in numerous domains. With the flexible 
nature of wireless networks and the powerful capabilities of smart contracts, our proposed 
model offers extensive possibilities for future use in various fields. Although current EVM gas 
fees may not provide a comfortable experience for IoT, we believe that this issue will be 
resolved in the future with the emergence of new technologies that offer low transaction fees, 
presenting a novel approach to this problem. In our proposed model, we have ensured that gas 
usage is minimized in recurring operations. We have demonstrated that the data control code 
verification function, which is the cornerstone of our model, is cost-free, and the additional 
operations performed on the nodes do not impose a significant burden in terms of energy and 
performance. This makes the model promising for real-life applications. 
 
Furthermore, we assert that the dynamic key generation mechanism in our proposed model 
effectively mitigates attack vectors such as imitation of the control code generation process, 
tampering with the node by malicious agents, or unauthorized installation of new programs. 
As IoT systems continue to advance rapidly, the usage of wireless networks expands 
accordingly. Therefore, the case study of our proposed model can be applied in various 
domains beyond network management operations. Some potential case studies include: 
 

• Resolving disputes between parties in cases of customer-side damages (e.g., fire, 
system outages) resulting from weaknesses in the network. 

• Network leasing and transfer. 
• Incorporating additional sensors into the network (allowing users to contribute their 

own data using their own sensors by joining the wireless network through smart 
contracts with specific protocols). 

•  Determining network usage times based on SLA agreements. 
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