• Title/Summary/Keyword: Small-signal stability analysis

Search Result 106, Processing Time 0.035 seconds

Analysis of Oscillation Modes of the STATCOM by the RCF Method (RCF 해석법을 사용한 STATCOM의 진동모드 해석)

  • Lee, Yun-Ho;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.228-229
    • /
    • 2006
  • The RCF analysis method is used to analyze small signal stability of power systems including GTO controlled FACTS equipment such as STATCOM. To apply the RCF analysis method in power system small signal stability problems, the state transition equations of power system equipments and power systems with STATCOM are presented. In eigenvalue analysis of power systems by the RCF analysis method, the STATCOM is modelled into the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF analysis method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching device such as the STATCOM.

  • PDF

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

Modeling of the State Transition Equations of Power Systems with Non-continuously Operating Elements by the RCF Method

  • Kim, Deok-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.344-349
    • /
    • 2005
  • In conventional small signal stability analysis, the system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of the state matrix. However, when a system contains switching elements such as FACTS equipments, it becomes a non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is performed by means of eigenvalue analysis of the system's periodic transition matrix based on the discrete system analysis method. In this paper, the RCF (Resistive Companion Form) method is used to analyze the small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of the power system, generator, controllers and FACTS equipments including switching devices should be modeled in the form of state transition equations. From this state transition matrix, eigenvalues that are mapped into unit circles can be computed precisely.

Eigenvalue Analysis of Power Systems with GTO Controlled SSSC by the RCF Method (GTO 제어 SSSC가 설치된 계통의 RCF 해석법에 의한 고유치 해석)

  • Dong, Moo-Hwan;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.230-231
    • /
    • 2006
  • In this paper, the RCF(Resistive Companion Form) analysis method is used to analyze small signal stability of power systems including GTO controlled FACTS equipment such as SSSC. To apply the RCF analysis method in power system small signal stability problems, state transition equations of power system equipments and power systems with SSSC are presented. In eigenvalue analysis of power systems by the RCF analysis method, SSSC is modelled into the equivalents voltage source model and PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodic switching device such as SSSC.

  • PDF

Comparison of Small Signal Stability Analysis Methods in Complex Systems with Switching Elements

  • Kim, Deok Young;Meliiopoulos, A.P.Sakis
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.79-83
    • /
    • 2004
  • A new small signal stability analysis method for eigenvalue analysis is presented. This method utilizes the Resistive Companion Form (RCF) for the computation of the transition matrix over a specified time interval, which corresponds to a single cycle operation of the system. This method is applicable to any system, with or without switching element. An illustrative example of the method is presented and the eigenvalues are compared with those of the conventional state space method (analog) in order to demonstrate the accuracy of the proposed eigenvalue analysis method. Also, the variations of oscillation modes that are caused by the switching operation can be precisely analyzed using this method.

Small-Signal Modeling and Controller Design of Grid-Connected Inverter for Solid State Transformer (반도체 변압기용 단상 계통 연계형 인버터의 소신호 모델링과 제어기 설계)

  • Kim, Bo-Gyeong;Lee, Jun-Young;Lee, Soon-Sinl;Jung, Jee-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, a small signal model for grid-connected inverter with unipolar pulse width modulation method is presented. Small-signal analysis allows to predict the stability and dynamics of the inverter. To regulate output voltage and to achieve power factor correction, inverter has two control loops. Loop gains are useful to identify the stability for multi-loop controlled system. Based on small-signal model, controllers are designed to improve audio susceptibility and output impedance characteristics. Proposed small-signal model and controllers are verified by PSIM simulation and experiments.

Analysis of small signal stability using resonance condition (공진 조건을 이용한 미소신호 안정도 해석)

  • Cho, Sung-Jin;Jang, Gil-Soo;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.109-111
    • /
    • 2001
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be predicted well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range can be identified by the analysis of resonance condition. The proposed method is applied to test systems, and the results illustrate its capabilities.

  • PDF

Analysis of Small Signal Stability Considering Voltage Stability (전압안정도를 고려한 미소신호안정도 해석)

  • Kim, D.J.;Moon, Y.H.;Yoon, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.323-326
    • /
    • 2001
  • This paper describes the algorithm which can not only take account of voltage suability but also consider small signal stability. As for voltage stability both CPF and PoC methods are utilized to pinpoint the exact voltage collapse point. Then, using the converged load flow results full system matrix is configured and its eigenvalues are computed. The suggested algorithm is applied to the Two-area system, and verified its usefulness. In addition this paper also deals with the results of analyzing the two-area system in terms of voltage stability and small signal stability.

  • PDF

Contingency Analysis for Small Signal Stability of Power Systems (전력계통의 미소신호안정도 상정사고 해석)

  • 심관식;김용구;문채주
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.127-137
    • /
    • 2003
  • Contingency analysis is one of the most important tasks encountered by planning and operation of lafe scale power systems. This paper describes a new contingency analysis methods for small signal security assessment based on the eigen-sensitivity/perturbation of the electromechanical oscillation modes. The eigen-sensitivity/perturbation with respect to line suceptances and controller parameters can he used to find possible sources of the system instability, and to select contingency for small signal stability. Also, the contingency selection to identify critical generators for MW changes can be obtained by computing the relative movement of the system oscillation modes. The proposed algorithm has been successfully tested on the KEPCO systems which is comprised of 791-bus, 1575-branch and program PSS/E

Analysis of Oscillation Modes in Discrete Power Systems Including GTO Controlled STATCOM by the RCF Method (GTO 제어 STATCOM을 포함하는 이산 전력시스템의 RCF 해석법에 의한 진동모드 해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.829-833
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including GTO controlled parallel FACTS equipments such as STATCOM. To apply the RCF method in power system small signal stability problems, state transition equations of generator, controllers and STATCOM are presented. In eigenvalue analysis of power systems, STATCOM is modelled as the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching devices such as STATCOM.