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Comparison of Small Signal Stability Analysis Methods in Complex
Systems with Switching Elements

Deok Young Kim* and A. P. Sakis Meliopoulos**

Abstract - A new small signal stability analysis method for eigenvalue analysis is presented. This
method utilizes the Resistive Companion Form (RCF) for the computation of the transition matrix over
a specified time interval, which corresponds to a single cycle operation of the system. This method is
applicable to any system, with or without switching element. An illustrative example of the method is
presented and the eigenvalues are compared with those of the conventional state space method (analog)
in order to demonstrate the accuracy of the proposed eigenvalue analysis method. Also, the variations
of oscillation modes that are caused by the switching operation can be precisely analyzed using this
method.
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1. Introduction

FACTS technology utilizes high power electronic
devices to enhance controllability of electric power flow in
modern power systems. This has the potential to increase
power transfer capability and provide economic loading of
existing transmission facilities. These attractive features of
FACTS clements also cause unwanted effects, which are
mainly waveform distortion and additional oscillation
modes. These effects are generated by the switching
operation of power electronic devices.

In conventional small signal stability analysis, a system
is assumed to be invariant and state space equations are
used to calculate the eigenvalues of the state matrix.
However, when a system contains switching elements such
as FACTS devices, it becomes a non-continuous system. In
this case, a mathematically rigorous approach to a system’s
small signal stability analysis is through eigenvalue
analysis of the system periodic transition matrix based on
the discrete system analysis method. In this paper, the
Resistive Companion Form (RCF) method is used to
analyze the small signal stability of a non-continuous
system including switching elements. To demonstrate the
relative merits of the proposed method, a comparison of
the conventional state space method and RCF method is
presented for application systems both with and without
switching elements.
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2. Resistive Companion Form (Rcf) Method

For small signal stability analysis, any power system
device is described with a set of algebraic differential
integral equations. These equations can be arranged in the
following general form:

[i(r)} HECORTORIORIONTO)] B
O L L0050v0,0.60)
where,

i(¢) : vector of terminal currents,

v(¢) : vector of terminal voltages,

y(8) : vector of device internal state variables,

u(t) : vector of independent controls

This form includes two sets of equations, which are
named external equations and internal equations,
respectively. The terminal currents appear only in the
external equations and the device state variables consist of
two sets: external states (i.e. v(¢) ) and internal states (i.e.

y(®).

An example of the above modeling is a switching device
represented with linear elements. Between switchings, the
model is described with a linear differential equation of the
form:
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Equation (1) is integrated using a suitable numerical
integration method such as the trapezoidal method.
Assuming an integration time step h, the result of the
integration is manipulated to be in the following form:
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To consider the connectivity constraints among the devices
of the system, Kirchoff’s current law is applied to each
node of the system. The application of KCL at each node

will result in elimination of all device terminal currents.
The overall network equation has the form:
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or the equivalent:
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where the superscript + indicates a generalized inverse
matrix. Note that the above equation represents the state
transition equation for the entire system from time t-h to
time t. The above linear equation form is the resistive

companion form that results from the trapezoidal
integration method. The transition matrix is:
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Eigenvalue analysis of the transition matrix provides the
small signal stability of the system.

In general, we are interested in the transition matrix over
at least one period of system operation. The proposed
method provides an algorithm for the recursive
computation of the transition matrix over a desired time
period and around the operating conditions of the system.
The entire transition matrix over a preferred time period
can be performed by sequential substitution of the

transition matrix state variables in each time step. The
overall transition matrix has the form:
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where, ®,(¢,,¢,,)is the transition matrix of the specified

time step.

The location of an eigenvalue of the transition matrix
indicates the nature of the mode. In order to interpret the
eigenvalues in terms of modal damping factors and natural
frequencies, we can use eigenvalue mapping between the
transition matrix eigenvalue and state space eigenvalue.
It is known that:

Ay =™ = e = pel® (8)

where, )»d and lc are the eigenvalues of the transition
matrix (i.e. discrete system) and state space matrix (i.e.
continuous system), respectively, while T is the 60Hz
period, and A =-a+ j§-

The magnitude r is related to the damping factor o
and the angle 0 is related to the angular frequency S .
Therefore, the eigenvalues of transition matrix have the
effect of mapping those of state space matrix to unit circle.
It implies that highly damped modes are identified with
eigenvalues near the center of the unit circle, stable
oscillatory modes are identified with eigenvalues within
the unit circle and unstable modes are identified with
eigenvalues outside the unit circle.

3. Application Examples

To compare the eigenvalues of the transition matrix and
the state space matrix, two complex systems with and
without switching elements are used.

3.1 Complex system without switching element

The application system without switching element is shown
in Fig. 1. The parameters of the application system are:

R, =10.0[Q], R, = 50.0(Q], R, = 30.0(Q], R, = 20.0{Q]
L, =0.05[H],L, =0.1[H],L, =0.2[H],
C, =0.002[F],C, = 0.0005F],V =110.0{V]
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Fig. 1 Complex system without switching element
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State space method
The state space equations of Fig. 1 are:
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From the circuit diagram, the state transition equations are:
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From the above equations, the transition matrix can be
calculated as (6).

Comparison of eigenvalues
The eigenvalues of the state space method and transition

matrix are compared from Table 1 to Table 3. In this
example, the time step h is defined as .0001 sec and the
eigenvalues of the state space method are transformed into
a unit circle.

From the above tables, the largest error ratio in Table 3
is 0.005584%. Therefore, as in the complex system without
switching elements, the ecigenvalues of the state space
method and RCF method are almost the same.

Table 1 Comparison of eigenvalues, t=.0001 sec
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Table 2 Comparison of eigenvalues, t= 0.0002 sec

Mode RCF Method State Space Method Errczrq}iatxo
(4
1 974697 974681 001654
+j .051779 +j.051783
2 974697 974681 001654
-j.051779 | -j.051783
3 963425 963425 .000428
4 994806 994806 .000001
5 971352 971352 .000206
Table 3 Comparison of eigenvalues, t= 0.0003 sec
Mode RCF Method State Space Method Errczl;liatlo
(v}
1 961297 961245 .005584
+j .076683 +j .076694
2 961297 961245 005584
-j.076683 - j.076694
3 945634 945648 .001454
4 992219 992219 .0
5 957334 957341 000692

3.2 Complex system with switching elements

The application system with switching elements is
shown in Fig. 2. The parameters of the application system

are:

R, =20[Q1, R, = 40[Q], R, = 30[Q], L, = 0.05[H],
L, =0.[H1,C, =0.2[F],V, =110[V]
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Fig. 2 Complex system with switching elements

3.2.1 Case 1 (SW 1 : close, SW 2 : open)

State space method
The state space equations of Fig. 2 are:

State Space Error
Mode RCF Method Methl()) d Ratio (%)
1 987609 987609 .000208
+j.026216 +j.026216
2 987609 987609 .000208
-j.026216 -j 026216
3 981543 981544 .000055
4 997399 997399 .000005
5 985573 985573 .000023
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RCF method
From the circuit diagram, the state transition equations
are:
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3.2.2 Case 2 (SW 1: open, SW 2: close)

State space method
The state space equations of Fig. 2 are:
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RCF method
From the circuit diagram, the state transition equations
are:
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From the above equations, the transition matrix can be
calculated as (6).

Comparison of eigenvalues
The eigenvalues of the state space method and transition

matrix are compared from Table 4 to Table 7. In this

example, the time step h is also defined as .0001 sec and all
eigenvalues of the state space method are transformed into
a unit circle in Table 4 and Table 5, while all the
eigenvalues of the RCF method are transformed into a S-
plane in Table 6 and Table 7.

Table 4 Comparison of eigenvalues, t=0.0006 sec in Case 1

State Space .
Mode RCF Method Method Error Ratio (%)
1 99989 99989 .0
.83534 .83535 00134
3 78660 78662 .00318

In Table 4, the eigenvalues are calculated at t=0.0006
sec in Case 1 (SW1 is closed and SW2 is opened), which
are from 0 to 0.0006 sec with a time step of 0.0001 sec. It
is assumed that the errors of the transition matrix by
sequential substitution of state variables in each time step
will be the largest at 0.0006 sec. In this case, the largest
error ratio between the state space method and RCF
method is 0.00318%, which means that the eigenvalues
from the two methods are almost the same.

Table 5 Comparison of eigenvalues, t = 0.001 sec in Case 2

Mode | RCF Method |State Space Method| Error Ratio (%)
1 99988 99988 .00089
2 .88697 .88697 .0
3 72606 72618 .01706

In Table 5, the eigenvalues are calculated at t=0.001 sec
in Case 2 (SW1 is opened and SW2 is closed), which are
from 0.0006 to 0.001 sec with a time step of 0.0001 sec. It
is also assumed that the errors of the transition matrix by
sequential substitution of state variables in each time step
will be the largest at 0.001 sec. In this case the largest error
ratio between the state space method and RCF method is
0.01706%, which means that the eigenvalues from the two
methods are almost the same.

Table 6 Eigenvalues of Case 1 and Case 2 by state space
method (S-plane)

Mode 1=.0006 7=.001
1 —.16675 —-.29187
2 —299.83323 —-299.83312
3 -399.99999 —799.87498

In Table 6, all the eigenvalues of the state space method
in Case 1 and Case 2 are shown in a S-plane. It is clear that
there is no relation between the eigenvalues of Case 1 and
those of Case 2 caused by the switching action in the state
space method.
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Table 7 Eigenvalues of RCF method including switching
effect (S-plane)
Mode} 1=.0006 1=.0007 1=.0008 1=.0009 1=.001

1 -.16675| —.1498011| —.1792794| —.1876583| —.1954392
2 —299.8332| -262.3736( -299.8555( -299.8555| —299.8555
3 —399.9999( —457.2448( -500.1340( —533.4900( -560.1738

The variation of eigenvalues by the RCF method in each
time step is shown in Table 7. All the eigenvalues are
transformed into a S-plane. To compare the eigenvalues of
Tables 6 and 7, the loci of eigenvalues in Table 7 by the
RCR method in Case 2 start from those of 0.0006 sec and
become closer to those of 0.001 sec in Table 6. It is clear
that the variation of eigenvalues in each time step in Table
7 is caused by the switching operation. These results are
impossible to analyze by the state space method. Upon
comparing the eigenvalues of the state space method and
RCF method at 0.001 sec, mode 2 is almost the same.
However, modes 1 and 3 of the state space method and
RCF method are different and the errors are somewhat
significant.

4. Conclusion

The eigenvalues from the conventional state space
method and RCF method are compared in small signal
stability analysis. Those are almost the same in continuous
system analysis. But, in non-continuous systems including
switching elements, the eigenvalues from the state space
method and RCF method are different. The RCF method
can calculate exactly the variation of oscillation modes
after switching action. Therefore, RCF method is a useful
one to analyze a non-continuous systems including
switching elements in small signal stability analysis.
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