• Title/Summary/Keyword: Small-signal Model

Search Result 396, Processing Time 0.029 seconds

Design of Digital Current Mode Control for Power Converters (전력변환회로의 디지털 전류모드제어기 설계)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.162-168
    • /
    • 2005
  • In this paper, a digital current mode control is designed for the power converter applications. The designed digital current mode controller is derived analytically from the continuous time small signal model of the power converters. Due to the small signal model based derivations of the control law, the designed control method can be applicable to boost, buck, and buck-boost converters. It is also proven that the controlled power converter employing the designed digital current mode controller is always stable regardless of an operating conditions. In order to show the usefulness of a designed controller, experiments are carried out using a 16bit DSP micro-processor, TMS320LF2406A.

Noise Analysis of Sub Quarter Micrometer AlGaN/GaN Microwave Power HEMT

  • Tyagi, Rajesh K.;Ahlawat, Anil;Pandey, Manoj;Pandey, Sujata
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.125-135
    • /
    • 2009
  • An analytical 2-dimensional model to explain the small signal and noise properties of an AlGaN/GaN modulation doped field effect transistor has been developed. The model is based on the solution of two-dimensional Poisson's equation. The developed model explains the influence of Noise in ohmic region (Johnson noise or Thermal noise) as well as in saturated region (spontaneous generation of dipole layers in the saturated region). Small signal parameters are obtained and are used to calculate the different noise parameters. All the results have been compared with the experimental data and show an excellent agreement and the validity of our model.

Analysis and Control of Low Frequency Oscillation using TCSC Small Signal Model by Control of Firing Angles (TCSC의 소신호 모형을 이용한 점호각 제어에 의한 저주파 진동 감쇠 효과 해석 및 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Park, Jong-Keun;Moon, Seung-Ill;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.120-124
    • /
    • 1995
  • TCSC can not only increase power flow but also damp low frequency oscillation by controlling firing angles of thyristors. But, a model considering voltage, current firing angles is not derived. This paper used a small signal model considirng these variables which was derived in paper [1]. TCSC model is combined with swing equation. Being related to rotor angles and firing angles of thyristors, current and synchronizing torque coefficient is reformulated. Because firing angles of thyristors can be controlled only twice within one period, swing equation is transformed to discrete time model. It is shown that low frequency oscillation can be damped by controlling firing angles in one machine infinite bus power system.

  • PDF

Reducing Computational Complexity for Local Maxima Detection Using Facet Model (페이싯 모델을 이용한 국부 극대점 검출의 처리 속도 개선)

  • Lee, Gyoon-Jung;Park, Ji-Hwan;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • In this paper, we propose a technique to detect the size and location of the small target in images by using Gaussian kernel repeatedly. In order to detect the size and location of the small target, we find the local maximum value by applying the facet model and then use the $3{\times}3$ Gaussian kernel repeatedly. we determine the size of small target by comparing the local maximum value $D_2$ according to the number of iteration. To reduce the computational complexity, we use the Gaussian pyramid when using the kernel repeatedly. Through the experiment, we verified that the size and location of the small target is detected by the number of iterations and results show improvements from conventional methods.

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

Effect Analysis of the Low Frequency Oscillation Mode of Inter-area System According to Load Characteristics (부하특성이 지역간 계통의 저주파 진동 모드 해석에 미치는 영향 분석)

  • Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1703-1707
    • /
    • 2008
  • Low frequency oscillation of inter-area system is important problem in power system areas because the operation conditions of power system depend on it. Generally, the analysis of the problem is used by small signal stability. Especially, the analysis results are affected by decision of load models. In this paper, the effect of the analysis results was studied according to load component characteristics. ZIP model, popular in large-scaled power system analysis, was used as the load model. Many cases were studied according to the combination of ZIP model in inter-area system.

Alternative Derivation of Continuous-Time Model for Current-Mode Control (전류모드제어를 위한 연속시간모델의 새로운 유도 방법)

  • 정동열;홍성수;최병조;안현식;사공석진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.137-142
    • /
    • 2003
  • Two existing continuous-time models for the current-mode control have presented noticeable differences in their small-signal predictions. As an attempt to clarify the origin of these disparities, this paper presents an alternative way of deriving a continuous-time model for the current-model control. The results of this paper would provide insights to comprehend the dissimilarity in the modeling method and final results of the earlier models of current-mode control models.

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

Controller Design of the Series Resonant Converter for Reducing Output Voltage Ripple (출력 전압 맥동감소를 위한 직렬공진형 변환기의 제어기 설계)

  • 김만고;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.376-382
    • /
    • 1988
  • A small-signal low-frequency disturbance of the input line affects the regulated-output voltage of the series resonant converter. To mitigate the detrimental effect, the output feedback PI-controller is employed. Small-signal linear models are represented to characterize the closed loop series resonant converter system. Design equations for the PI-controller which satisfy stability and percent ripple conditions are derived from the closed-loop linear model. Experimental results are presented which show excellent correlation with theory.

  • PDF