• Title/Summary/Keyword: Small-scale test

Search Result 835, Processing Time 0.032 seconds

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Flexural Performance of Full-scale RC Beams Strengthened with Different Amount of FRP Composite (FRP복합체로 보강된 실물모형 RC보의 보강재 강성에 따른 휨 보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.125-128
    • /
    • 2006
  • Many research have been carried out concerned with the flexural performance of FRP composite in a various ways. Most of them, however, have used a small-scale specimen, so haven't been fully verified by full-scale model test. In this study, a full-scale RC beam model test for flexural strengthening with CFRP composites has been performed in order to verify test results obtained through a series of small-scale model test with respect to FRP stiffness affecting strengthening performance in the previous studies. A total of 4 specimens have been manufactured including control beam. The specimens strengthened with CFRP composites consist of 3 different CFRP stiffness with 2 types of CFRP composite. Consequently, the purpose of this study is to estimate influence of the size effect of specimens and FRP stiffness on the flexural performance. As a result, the effective strain of FRP composite is inversely proportional to FRP stiffness and ensures the same performance with small-scale model test.

  • PDF

A study on the Dynamic analysis of 1/5 scale derailment simulator model (소형 탈선 시뮬레이터 축소모델 동특성 해석에 관한 연구)

  • Lee, Se-Yong;Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • A roller rig has been widely used in the study about dynamic stability and railway safety. However, the cost for constructing the roller rig and the difficulty in adjusting the design parameters for vehicle systems lead to the development of a small scale simulator which is cheaper than the large scale test systems and easy to control the parameters affecting dynamic characteristics of the railway vehicle. For the operation of the small scale test system called a small scale simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Modified Similitude Law for Pseudodynamic Test on Small-scale Steel Models (철골 축소모헝의 유사동적실험을 위한 수정된 상사법칙)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.49-57
    • /
    • 2003
  • Although there are several experimental techniques to evaluate the seismic behavior and performance of civil structures, small-scale models in mast of physical tests, instead of prototypes or large-scale models, would be used due to a limitation on capacities of testing equipments. However, the inelastic seismic response prediction of small-scale models has some discrepancies inherently because the similitude law is generally derived in the elastic range. Thus, a special attention is required to regard the seismic behavior of small-scale models as one of prototypes. In this paper, differences between prototypes and small-scale models pseudodynamically tested on steel column specimens are investigated and an alternative to minimize them is suggested. In general, small-scale models could have the distorted stiffness induced from some experimental errors on test setup, steel fabrication and so on. Therefore, a modified similitude law considering both a scale factor for length and a stiffness ratio of small-scale model to prototype is proposed. Using the modified similitude law to compensate experimental errors, the pseudodynamic test results from modified small-scale model are much improved as compared with the results of prototype. According to the pseudodynamic test results of small-scale steel models, it can be concluded that the modified similitude law proposed could be effective in simulating the seismic response of prototype structures.

Fracture Mechanics Study on Wear Mechanism of Ceramics -Discussions on Experimental Results of Wear Test- (세라믹의 마멸기구에 관한 파괴역학적 연구 -마멸실험 결과의 고찰-)

  • 김석삼;김재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.636-645
    • /
    • 1990
  • Analytically induced wear mechanism of elastic body under Hertzian contact is applied in acutual wear test of ceramics. There are two types of wear in ceramics, a large scale wear and a small scale wear. The large scale wear is commensurable with Hertzian contact area and the small scale wear with real contact area. Nondimensional parameter, S$_{c}$, is introduced and fully examined to estimate or predict wear rate of ceramics. Ceramic wear for S$_{c}$.leq.0.8 is in small scale wear and for S$_{c}$;geq.1.6 in large scale wear. wear.

A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator (소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

Prediction of Hover Performance on Development of Small-Scale UAV using Numerical and Experimental Approach (실험을 통한 소형 무인헬리콥터의 공력인자 도출 및 제자리 비행 성능 예측)

  • Lee, Byoung-Eon;Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beum;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2548-2553
    • /
    • 2008
  • Prediction of the rotor blade performance is important for determining design factors such as weight and size in development of a small-scale helicopter. Generally, prediction of helicopter performance means the estimation of the power required for a given flight condition. However, due to lack of test data and analyzed results for small-scale rotor blade operated at low Reynolds numbers ($Re{\approx}10^5$), this is not an easy task. As an initial research, this work performs a modeling of a single rotor configuration with FLIGHTLAB and a experimental research with rotor test bed. In this process, we performed small-scale isolated single rotor by experimental and numerical method and achieved good agreement of the hover performance on the test data and simulation results.

  • PDF

Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II) (소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1137-1143
    • /
    • 2011
  • The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at $950^{\circ}C$ to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype.

The use of small scale model testing to compare connection methods of steel purlins

  • Urquhart, Stephen M.;Kavanagh, Kenneth T.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.571-582
    • /
    • 1998
  • Testing of steel roof purlins is usually performed on full scale models in large vacuum test rigs. To undertake a comparison between web cleat connected purlins and flange bolted purlins a series of tests were performed on a 1:4 small scale model vacuum test rig. Various modelling issues need to be addressed to ensure reasonable comparison with actual constructed roof framing methods but still be suitable for an economical comparison between the connection methods. Model test results were supported by, and found to be in reasonable agreement with, deflection predictions from computer models based on finite element methods. This paper discusses the testing methods adopted and the value of small scale model testing programs as a means of obtaining comparisons between framing options.