• Title/Summary/Keyword: Small-scale field

Search Result 585, Processing Time 0.028 seconds

An experimental study of scale effect on the shear behavior of rock joints

  • Lee Tae-Jin;Lee Sang-Geun;Lee Chung-In;Hwang Dae-Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.156-161
    • /
    • 2003
  • Mechanical behavior of rock joints usually can be characterized by small-scale laboratory shear tests due to economical and technical limitations, but their applicability to the behaviour of rock mass has been always questioned by a number of researchers because of scale effect. Though there have been several researches regarding the scale effect, it has been a controversial problem how to apply the result of small-scale laboratory shear test directly to field design from different conclusions among researchers. In order to grasp the trend of scale effect of shear behavior, a series of direct shear tests on replicas of natural rock joint surfaces made of gypsum cement with different size and roughness were conducted and analyzed. Result showed that as the size of the specimen increased, average peak shear displacement increased, but average shear stiffness and average peak dilation angle decreased. As for the dependency of scale on shear strength, the degree of scale effect was dependent on normal stress and roughness of rock joint. For the condition of low normal stress and high roughness, decrease of average peak shear strength with increasing size of joint was evident.

  • PDF

Utilization of UAV Remote Sensing in Small-scale Field Experiment : Case Study in Evaluation of Plat-based LAI for Sweetcorn Production

  • Hyunjin Jung;Rongling Ye;Yang Yi;Naoyuki Hashimoto;Shuhei Yamamoto;Koki Homma
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.75-75
    • /
    • 2022
  • Traditional agriculture mostly focused on activity in the field, but current agriculture faces problems such as reduction of agricultural inputs, labor shortage and so on. Accordingly, traditional agricultural experiments generally considered the simple treatment effects, but current agricultural experiments need to consider the several and complicate treatment effects. To analyze such several and complicate treatment effects, data collection has the first priority. Remote sensing is a quite effective tool to collect information in agriculture, and recent easier availability of UAVs (Unmanned Aerial Vehicles) enhances the effectiveness. LAI (Leaf Area Index) is one of the most important information for evaluating the condition of crop growth. In this study, we utilized UAV with multispectral camera to evaluate plant-based LAI of sweetcorn in a small-scale field experiment and discussed the feasibility of a new experimental design to analyze the several and complicate treatment effects. The plant-based SR measured by UAV showed the highest correlation coefficient with LAI measured by a canopy analyzer in 2018 and 2019. Application of linear mix model showed that plant-based SR data had higher detection power due to its huge number of data although SR was inferior to evaluate LAI than the canopy analyzer. The distribution of plant-based data also statistically revealed the border effect in treatment plots in the traditional experimental design. These results suggest that remote sensing with UAVs has the advantage even in a small-scale experimental plot and has a possibility to provide a new experimental design if combined with various analytical applications such as plant size, shape, and color.

  • PDF

Analysis of Spatial Variability in a Korean Paddy Field Using Median Polish Detrending (Median polish 기법을 이용한 한국 논의 공간변이 분석)

  • Chung, Sun-Ok;Jung, In-Kyu;Sung, Je-Hoon;Sudduth, Kenneth A.;Drummond, Scott T.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.362-369
    • /
    • 2008
  • There is developing interest in precision agriculture in Korea, despite the fact that typical Korean fields are less than 1 ha in size. Describing within-field variability in typical Korean production settings is a fundamental first step toward determining the size of management zones and the inter-relationships between limiting factors, for establishment of site-specific management strategies. Measurements of rice (Oriza Sativa L) yield, chlorophyll content, and soil properties were obtained in a small (100-m by 30-m) Korean rice paddy field. Yield data were manually collected on 10-m by 5-m grids (180 samples with 3 samples in each of 60 grid cells) and chlorophyll content was measured using a Minolta SPAD 502 in 2-m by 2-m grids. Soil samples were collected at 275 points to compare results from sampling at different scales. Ten soil properties important for rice production in Korea were determined through laboratory analyses. Variogram analysis and point kriging with and without median polishing were conducted to determine the variability of the measured parameters. Influence of variogram model selection and other parameters on the interpretation of the data was investigated. For many of the data, maximum values were greater than double the minimum values, indicating considerable spatial variability in the small paddy field, and large-scale spatial trends were present. When variograms were fit to the original data, the limits of spatial dependency for rice yield and SP AD reading were 11.5 m and 6.5 m, respectively, and after detrending the limits were reduced to 7.4 m and 3.9 m. The range of spatial dependency for soil properties was variable, with several having ranges as short as 2 m and others having ranges greater than 30 m. Kriged maps of the variables clearly showed the presence of both large-scale (trend) variability and small-scale variability in this small field where it would be reasonable to expect uniformity. These findings indicate the potential for applying the principles and technology of precision agriculture for Korean paddy fields. Additional research is needed to confirm the results with data from other fields and crops.d similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Three-dimensional evolution of a solar magnetic field that emerges, organizes and produces a flare and flare-associated eruptions of a flux rope and plasmoid

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Solar flare is one of the energetic phenomena observed on the Sun, and it is often accompanied with eruptions such as global-scale eruption of a flux rope (filament/prominence eruption) and small-scale eruption of a plasmoid. A flare itself is a dissipative phenomenon where accumulated electric current representing free magnetic energy is dissipated quickly at a special location called a current sheet formed in a generally highly conductive solar corona. Previous studies have demonstrated how a solar magnetic field placed on the Sun forms a current sheet when magnetic shear is added to the field. Our study is focused on a self-consistent process of how a subsurface magnetic field emerges into the solar atmosphere and forms a current sheet in the corona. This study also gives light to a relation among a flare and two types of flare-associated eruptions; flux-rope eruption and plasmoid eruption.

  • PDF

A Modeling Study of Local Equivalence Ratio Fluctuation in Imperfectly Premixed Turbulent Flames

  • Moon, Hee-Jang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1479-1489
    • /
    • 2004
  • The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.

DNS and Analysis on the Interscale Interactions of the Turbulent Flow past a Circular Cylinder for Large Eddy Simulation (원형 실린더를 지나는 난류 유동장의 직접수치해석과 큰 에디모사를 위한 스케일 간 상호작용 연구)

  • Kim, Taek-Keun;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1801-1806
    • /
    • 2004
  • Stochastic nature of subgrid-scale stress causes the predictability problem in large eddy simulation (LES) by which the LES solution field decorrelates with field from filtered directnumerical simulation (DNS). In order to evaluate the predictability limit in a priori sense, the information on the interplay between resolved scale and subgrid-scale (SGS) is required. In this study, the analysis on the inter-scale interaction is performed by applying tophat and cutoff filters to DNS database of flow over a circular cylinder at Reynolds number of 3900. The effect of filter shape is investigated on the interpretation of correlation between scales. A critique is given on the use of tophat filter for SGS analysis using DNS database. It is shown that correlations between Karman vortex and SGS kinetic energy drastically decrease when the cutoff filter is used, which implies that the small scale universality holds even in the presence of the large scale coherent structure.

  • PDF

The Potential Assessment and Creation Programming of Biotopes in Small and Medium City in Korea (우리나라 중소도시 비오톱 공간의 조성방안)

  • 정문선;이명우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.75-90
    • /
    • 2000
  • This study suggests the methods of the assessment and creation of biotopes in small and medium sized cities, in Korea. For this purpose, Chonju city was selected to classify and asses the biotope types. Moreover, relevant legislations to conserve and enhance urban biotopes were examined. The results of this study are as follows: 1) There were two approaches to asses the potential of urban biotopes in medium-sized cities. One was the urban scale evaluation for urban green spaces and the other was the biotope scale evaluation for the classification and evaluation of biotopes. 2) The urban scale evaluation was developed through overlaping analysis of landuse and vegetation factors. This study also included the conception of watershed. In this conception, three watersheds in Chonju city were characterized. According to these characteristics, individual programs for conservation and enhancement of urban green space were suggested. 3) For the biotope scale evaluation, Selected site was inclusively mapped and field investigation actually was carried. There were total 9 types of bitopes. Especially landuse was appeared in various evaluation items were vegetation structure, area of green space, condition of vegetation and vegetation profile. Mt, Gonji and Dukjin park, Chonbuk national University and fields were evaluated highly I the potential. 4) The biotope programs were based on the results of assessment and physical characteristics of biotopes. The uniform and simple levels on vegetation must be modified with various levels of vegetation structure and vernacular plants. And the physical characteristics like Points, Corridors and Patches can be organized by the conception of biotope networking theory. 5) The proper legislative environment was the clue elements for the biotope programs. Until now, only five types of parks and two types of green space are defined and the minimum size of green space has been proposed by the law. So, it is necessary to enlarge the conception of green space in legislation and improve the quality of green space by amending the related regulations. This study has limitation because it was selected only in Chonju. Through the continuous studies, we need to apply this other small and medium sized cities, South Korea. Also the data collection and management of theme maps such as actual vegetation, landuse and a soil must be done preliminary.

  • PDF

Image Feature Extraction Using Energy field Analysis (에너지장 해석을 통한 영상 특징량 추출 방법 개발)

  • 김면희;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach

  • Zhanlei Wang;Ye Chen
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.513-523
    • /
    • 2023
  • Buckling and post-buckling behaviors of geometrically perfect double-curvature shells made from smart composites have been investigated. The shell has been supposed to be exposed to transverse mechanical loading and magneto-electro-elastic (MEE) coupling. The composite shell has been made of two constituents which are piezoelectric and magnetic ingredients. Thus, the elastic properties might be variable based upon the percentages of the constituents. Incorporating small scale impacts in regard to nonlocal theory leads to the establishment of the governing equations for the double-curvature nanoshell. Such nanoshell stability will be shown to be affected by composite ingredients. More focus has been paid to the effects of small scale factor, electric voltage and magnetic intensity on stability curves of the nanoshell.