• Title/Summary/Keyword: Small rotor

Search Result 398, Processing Time 0.027 seconds

Development of Mach Small-scaled Composite Blade for Helicopter Articulated Rotor System (헬리콥터 관절형 로터 시스템용 마하 축소 복합재료 블레이드 개발)

  • Kim, Deog-Kwan;Song, Keun-Woong;Kim, Joune-Ho;Joo, Gene
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.57-60
    • /
    • 2003
  • This Paper contains the development procedure of Mach small-scaled composite rotor blade for helicopter articulated rotor system. This mach small-scaled composite blade design is conducted by using CORDAS program developed by KARI. The Dynamic analysis for an articulated rotor system with this blade is conducted by using FLIGHTLAB which is commercial software for helicopter analysis. Also the optimizing procedure of iterative design was described. The designed composite blades were manufactured after establishing the effective curing method. For small-scaled rotor test, strain gauges were embedded in composite blade spar to obtain bending & torsion strain value. To verify sectional properties of a blade, the bench test is accomplished. After comparing a designed data and tested data, Dynamic Calculation was repeated using tested data. Through this research, experiences of mach small-scaled composite blade development were accumulated and will be applied to the related research field.

  • PDF

Structural Analysis of KARI General Small-scaled Rotor Test System (GSRTS) (KARI 축소 로터 시험장치(GSRTS) 구조해석)

  • Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • This paper describes the structural analysis results of KARI General Small-scaled Rotor Test System (GSRTS) operated in KARI to verify operational safety. This GSRTS was developed to conduct a froude and mach small-scaled rotor test. This analysis was performed to investigate the structural Factor of Safety for the various small-scale rotor system like articulated or hingeless rotor and to check the operational capability using given operational design load. Specially, drive system has several bearings, mechanical gears, shaft, etc. and these parts must be required to achieve an operational safety. The calculation was done by using geometric data and material properties by analytical method. This rotor test system should be operated within these calculated Factor of Safety. Furthermore, the operational limitation should be defined as applied to small-scale rotor system of KUH in future.

  • PDF

Modification of Dia. 2m-Small-scaled Rotor Test Facility (직경 2m급 축소로터 시험장치 개조 및 보완)

  • Song, Keun Woong;Lee, Jae Ha;Kim, Seoung Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.190-195
    • /
    • 2012
  • Small-scaled Rotor Test facility(GSRTS, General Small-scaled Rotor Test Facility) in KARI could not use the test because facility aging and parts discontinued. Also in order to perform a joint international research, GSRTS modifications should be needed. So requirements of GSRTS modifications were established and according to the requirements, GSRTS modifications were conducted. Facility operation test, 6-component fixed balance calibration, Small-scaled OLS rotor performance test were performed to verify the results of GSRTS modifications. Reasonable results were obtained in comparison to calculation results. Then GSRTS ready was completed to conduct international collaborative research and wind tunnel test.

  • PDF

Design, Control, and Implementation of Small Quad-Rotor System Under Practical Limitation of Cost Effectiveness

  • Jeong, Seungho;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.324-335
    • /
    • 2013
  • This article presents the design, control, and implementation of a small quad-rotor system under the practical limitation of being cost effective for private use, such as in the cases of control education or hobbies involving radio-controlled systems. Several practical problems associated with implementing a small quad-rotor system had to be taken into account to satisfy this cost constraint. First, the size was reduced to attain better maneuverability. Second, the main control hardware was limited to an 8-bit processor such as an AVR to reduce cost. Third, the algorithms related to the control and sensing tasks were optimized to be within the computational capabilities of the available processor within one sampling time. A small quad-rotor system was ultimately implemented after satisfying all of the above practical limitations. Experimental studies were conducted to confirm the control performance and the operational abilities of the system.

Prediction of Hover Performance on Development of Small-Scale UAV using Numerical and Experimental Approach (실험을 통한 소형 무인헬리콥터의 공력인자 도출 및 제자리 비행 성능 예측)

  • Lee, Byoung-Eon;Kim, Sang-Deok;Byun, Young-Seop;Song, Jun-Beum;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2548-2553
    • /
    • 2008
  • Prediction of the rotor blade performance is important for determining design factors such as weight and size in development of a small-scale helicopter. Generally, prediction of helicopter performance means the estimation of the power required for a given flight condition. However, due to lack of test data and analyzed results for small-scale rotor blade operated at low Reynolds numbers ($Re{\approx}10^5$), this is not an easy task. As an initial research, this work performs a modeling of a single rotor configuration with FLIGHTLAB and a experimental research with rotor test bed. In this process, we performed small-scale isolated single rotor by experimental and numerical method and achieved good agreement of the hover performance on the test data and simulation results.

  • PDF

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

Design and Feasibility Study of Double Gerotor (이중 제로터의 설계 및 응용 가능성에 대한 연구)

  • Lee, Sung-chul
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.215-221
    • /
    • 2019
  • A gerotor set consists of two elements, an inner rotor and an outer rotor. The outer rotor has one more tooth than the inner rotor and has its centerline positioned at a fixed eccentricity from the centerline of the inner rotor. Although gerotors come in a variety of geometric configurations, all gerotor sets share the basic principle of having generated tooth profiles that provide continuous tight sealing during operation. The size of the gerotor is proportional to the number of teeth and the amount of eccentricity. The interior of an inner rotor with a large number of teeth has an enough space to include other machine elements. In this paper, the double gerotor mechanism, constructed by putting a small gerotor in the interior of a large inner rotor, is conceptualized. The double gerotor set is composed of an inner rotor, a planetary rotor, and an outer rotor. The inside profile of the planetary rotor corresponds to the outer rotor profile of the small gerotor, and the outside profile is the inner rotor profile of the large gerotor. In the double gerotor, the centers of the inner and the outer rotor are coincident because the eccentricities of two gerotors are balanced. The operation of a double gerotor is examined by analyzing the planetary motion, and a feasibility study for application of the double gerotor for hydraulic motors and pumps is performed. The double gerotor set has much application potential as a component of hydraulic systems.

Development and Verification of Small-Scale Rotor Hover Performance Test-stand (소형 로터 블레이드의 제자리 비행 성능 시험장치 개발 및 검증)

  • Lee, Byoung-Eon;Seo, Jin-Woo;Byun, Young-Seop;Kim, Jeong;Yee, Kwan-Jung;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.975-983
    • /
    • 2009
  • This paper presents the work being carried out in order to deduce hover performance of a small-scale single rotor blade as a preliminary study of a small coaxial rotor helicopter development. As an initial research, a test stand capable of measuring thrust and torque of a small-scale rotor blade in hover state was constructed and fabricated. The test stand consists of three parts; a rotating device, a load measuring sensor and a data acquisition system. Thrust and torque were measured with varying collective pitch angle at fixed RPM. Through this research, hover performance tests were conducted for a small-scale single rotor blade operating in low Reynolds number ($Re\;{\approx}3{\times}10^5$), as well as for verifying the test stand itself for acquiring hover performance.

The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW (LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Lee, Tae-Hun;Woo, Hyeok-Jae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.