• Title/Summary/Keyword: Small molecules

Search Result 669, Processing Time 0.029 seconds

Radiolabeling Methods Used for Preparation of Molecular Probes (분자영상 방사성추적자의 생산에 사용되는 방사성동위 원소 표지방법)

  • Choe, Yearn-Seong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • Molecular imaging visualizes cellular processes at a molecular or genetic level in living subjects, and diverse molecular probes are used for this purpose. Radiolabeling methods as well as radioisotopes are very important in preparation of molecular probes, because they can affect the biodistribution in tissues and the excretion route. In this review, the molecular probes are divided into small organic molecules and macromolecules such as peptides and proteins, and their commonly used radiolabeling methods are described.

Activation Energy for the Decapsulation of Small Molecules from A-Type Zeolites

  • 김정섭;황계정;홍석봉;노경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 1997
  • Potential energy function sets for some ion-exchanged A-type zeolites, K-A and Rb11Na1-A, were determined by introducing the X-ray crystal structures as constraints. The potential functions reproduced well the X-ray crystal structures of the monovalent ion-exchanged zeolites. The activation energies for the en- or de-capsulation of small molecules (H2, O2, N2, and CH4) and inert gases from the α-cage of model zeolites (Na-A, K-A, Rb11Na1-A, and Cs3Na9-A) were obtained by the molecular mechanical calculations. The calculated activation energies agreed well with experimental results.

NMR methods for structural analysis of RNA: a Review

  • Kim, Nak-Kyoon;Nam, Yun-Sik;Lee, Kang-Bong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • In last three decades, RNA molecules have been revealed to play the central roles in many cellular processes. Structural understanding of RNA molecules is essential to interpret their functions, and many biophysical techniques have been adopted for this purpose. NMR spectroscopy is a powerful tool to study structures and dynamics of RNA molecules, and it has been further applied to study tertiary interactions between RNA molecules, RNA-protein, and RNA-small molecules. This short article accounts for the general methods for NMR sample preparations, and also partially covers the resonance assignments of structured RNA molecules.

Construction of a Cell-Adhesive Nanofiber Substratum by Incorporating a Small Molecule

  • Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Electrospun nanofibers are being widely used as a substratum for mammalian cell culture owing to their structural similarity to collagen fibers found in extracellular matrices of mammalian cells and tissues. Especially, development of diverse synthetic polymers has expanded use of electrospun nanofibers for constructing cell culture substrata. Synthetic polymers have several benefits comparing to natural polymer for their structural consistency, low cost, and capability for blending with other polymers or small molecules to enhance their structural integrity or add biological functions. PMGI (polymethylglutarimide) is one of the synthetic polymers that produced a rigid nanofiber that enables incorporation of small molecules, peptides, and gold nanoparticles through co-electrospinning process, during which the materials are fixed without any chemical modifications in the PMGI nanofibers by maintaining their activities. Using the phenomenon of PMGI nanofiber, here I introduce a construction method of a nanofiber substratum having cell-affinity function towards a pluripotent stem cell by incorporating a small molecule in the PMGI nanofiber.

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

Prediction of PolymerSolvent Diffusion Coefficients Using Free-Volume Theory (자유부피이론을 이용한 고분자/용매 확산계수의 예측)

  • 홍성욱
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.27-30
    • /
    • 1997
  • 1. Introduction : Molecular diffusion of small molecules in polymers plays an important role in many areas where polymers are acting as barriers, and in separation processes, such as selective diffusion. Different applications of polymers have different requirements on their transport properties. Therefore, reliable predictions of diffusion coefficients for small molecules in polymeric materials could be a useful tool to design appropriate materials. For many years, the theories based on free-volume concepts have been widely used to correlate and predict diffusion behavior in polymer/solvent systems. In the theory derived by Vrentas and Duda, the empty space between molecules that is available for molecular transport, referred to as hole free-volume, is being redistributed. Molecular transport will occur only when a free-volume of sufficient size appears adjacent to a molecule and the molecule has enough energy to jump into this void. The diffusive jump is considered complete when the void left behind is closed before the molecule returns to its original position. In this paper, the Vrentas-Duda free-volume theory is presented and the methods to estimate free-volume parameters for predicting polymer/ solvent diffusion coefficients are described in detail.

  • PDF

Mass spectrometry based on nanomaterials (나노물질을 이용한 질량분석 기술 개발동향)

  • Park, Jong-Min;Noh, Joo-Yoon;Kim, Moon-Ju;Pyun, Jae-Chul
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2018
  • In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell

  • Cho, Sung Yong;Park, Sang Uk;Yang, Sung Mo;Kim, Sang Youl
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • Ultra-small optical anisotropy of a rubbed polyimide (PI) alignment layer is quantitatively characterized using the improved reflection ellipsometer. Twisted nematic (TN) cells are fabricated using the rubbed PIs of known surface anisotropy as alignment layers. Distribution of liquid crystal (LC) molecules in the TN cell is characterized using transmission ellipsometry. The retardation of the rubbed PI surface increases as rubbing strength increases. The tilt angle of the optic axis of the rubbed PI surface decreases as rubbing strength especially as the angular speed of the rubbing roller increases. Pretilt angle of LC molecules in the TN cell shows strong correlation with tilt angle of the optic axis of the rubbed PI surface. Both the apparent order parameter and the effective twist angle of the LC molecules in the TN cell decrease as the pretilt angle of LC molecules increases.

Long-Term Priming by Three Small Molecules Is a Promising Strategy for Enhancing Late Endothelial Progenitor Cell Bioactivities

  • Kim, Yeon-Ju;Ji, Seung Taek;Kim, Da Yeon;Jung, Seok Yun;Kang, Songhwa;Park, Ji Hye;Jang, Woong Bi;Yun, Jisoo;Ha, Jongseong;Lee, Dong Hyung;Kwon, Sang-Mo
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.582-590
    • /
    • 2018
  • Endothelial progenitor cells (EPCs) and outgrowth endothelial cells (OECs) play a pivotal role in vascular regeneration in ischemic tissues; however, their therapeutic application in clinical settings is limited due to the low quality and quantity of patient-derived circulating EPCs. To solve this problem, we evaluated whether three priming small molecules (tauroursodeoxycholic acid, fucoidan, and oleuropein) could enhance the angiogenic potential of EPCs. Such enhancement would promote the cellular bioactivities and help to develop functionally improved EPC therapeutics for ischemic diseases by accelerating the priming effect of the defined physiological molecules. We found that preconditioning of each of the three small molecules significantly induced the differentiation potential of $CD34^+$ stem cells into EPC lineage cells. Notably, long-term priming of OECs with the three chemical cocktail (OEC-3C) increased the proliferation potential of EPCs via ERK activation. The migration, invasion, and tube-forming capacities were also significantly enhanced in OEC-3Cs compared with unprimed OECs. Further, the cell survival ratio was dramatically increased in OEC-3Cs against $H_2O_2$-induced oxidative stress via the augmented expression of Bcl-2, a pro-survival protein. In conclusion, we identified three small molecules for enhancing the bioactivities of ex vivo-expanded OECs for vascular repair. Long-term 3C priming might be a promising methodology for EPC-based therapy against ischemic diseases.