• Title/Summary/Keyword: Small molecule

Search Result 375, Processing Time 0.021 seconds

Synthesis of Host Polymers and Guests for Electrophosphorescence

  • Watkins Scott E.;Chan, Khai Leok;Cho, Sung-Yong;Evans Nicholas R.;Grimsdale Andrew C.;Holmes Andrew B.;Mak Chris S.K.;Sandee Albertus J.;Williams Charlotte K.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.129-133
    • /
    • 2007
  • Significant progress has been realized in the design and synthesis of light emitting polymers that emit over the entire visible spectrum. However, up to seventy-five percent of charge recombination events can lead to triplet states that decay non-radiatively. Following the pioneering work in the field of small molecule organic light emitting devices, it has been found that solution processible iridium polymer complexes can be used to harness the wasted triplet energy. In this paper, new results with respect to the electrophosphorescence of solution processible tethered iridium polymer derivatives are presented. Furthermore, our approaches to the design of new high triplet energy conjugated polymer hosts are also reported.

$^{13}C$ and $^{57}Fe$ END OR of Nitrogenase: Can it Tell the Substrate-Binding Site in the Active Site?

  • 이홍인
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.18-18
    • /
    • 2002
  • Nitrogenase, comprised of the MoFe and Fe proteins, catalyzes the reduction of dinitrogen to ammonia at ambient temperature and pressure. The MoFe protein contains two metal centers, the P-cluster (Fe8S7-8) and the FeMo-cofactor (Fe7S9:homocitrate), the substrate binding site. Despite the availability of the crystal structure of the MoFe protein, suprisingly little is known about the molecular details of catalysis at the active site, and no small-molecule substrate or inhibitor had ever been shown to directly interact with a protein-bound cluster of the functioning enzyme, until our electron-nuclear double resonance(ENDOR) study of CO-inhibited nitrogenase.(omitted)

  • PDF

Inorganic and Transition Metal Azides

  • Seok, Won-K.;Klapotke, Thomas M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.781-788
    • /
    • 2010
  • Experimental and theoretical studies show that all covalent azides possess a nonlinear azide group. They also rationalize this remarkable structural feature. We have seen that the most important non-covalent contributions in the covalently bound azides system (X-N1-N2-N3) are the $\pi$-delocalization over the entire molecule and a strong negative hyperconjugation which donates electron density from the filled $\sigma$ (X-N1) orbital into the unfilled, antibonding $\pi^*$ (N2-N3) orbital. For transition metal azide complexes, a bent configuration and a small difference between the N-N bond lengths, generally the longer one being adjacent to the transition metal, were observed.

JNK Regulation of Oncogenesis

  • Heasley, Lynn E.;Han, Sun-Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2006
  • The literature provides strong precedent for both pro-tumorigenic and tumor suppressor roles for the c-Jun N-terminal kinases (JNKs) in the setting of oncogenesis. Clearly, JNKs are activated by numerous oncogenes and growth factors and the literature documents a role for these MAP kinases in cell proliferation and transformation. By contrast, JNKs mediate signals from diverse stimuli that result in cell death or differentiation and a role for JNKs as tumor suppressors has emerged. This enigmatic nature of the JNKs in the setting of oncogenesis is considered herein. Further illumination of the complex and context-dependent functions of the JNKs in cancer cells is of obvious importance for the rational use of small molecule JNK inhibitors as therapeutics.

Targeting Super-Enhancers for Disease Treatment and Diagnosis

  • Shin, Ha Youn
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.506-514
    • /
    • 2018
  • The transcriptional regulation of genes determines the fate of animal cell differentiation and subsequent organ development. With the recent progress in genome-wide technologies, the genomic landscapes of enhancers have been broadly explored in mammalian genomes, which led to the discovery of novel specific subsets of enhancers, termed super-enhancers. Super-enhancers are large clusters of enhancers covering the long region of regulatory DNA and are densely occupied by transcription factors, active histone marks, and co-activators. Accumulating evidence points to the critical role that super-enhancers play in cell type-specific development and differentiation, as well as in the development of various diseases. Here, I provide a comprehensive description of the optimal approach for identifying functional units of super-enhancers and their unique chromatin features in normal development and in diseases, including cancers. I also review the recent updated knowledge on novel approaches of targeting super-enhancers for the treatment of specific diseases, such as small-molecule inhibitors and potential gene therapy. This review will provide perspectives on using super-enhancers as biomarkers to develop novel disease diagnostic tools and establish new directions in clinical therapeutic strategies.

Isolation and characterization of plasmids isolated from streptomyces spp. and construction of recombinant plasmids (Streptomyces 속으로 부터 분리한 플라스미드의 특성 및 재조합 유도체의 제조)

  • 유주현;염도영;공인수
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.255-261
    • /
    • 1987
  • Five independent Actinomycetes harboring plasmids were isolated from soil. Molecular weight of these plasmids was 55kb, 6.2kb, 4.4kb, 55kb and 7.0kb, respectively. Among them small and apprent high copy number plasmids, pJY501 of 4.4kb and pHY711 of 7.0kb, were selected. The plasmids purified by CsCl-EtBr density gradient centrifugation preserved the conformation of supercoiled covalently closed circular molecule, and an apparent copy number was estivated about 150 and about 35 per chromosome. The isolates carrying plasmids were assigned to the genus Streptomyces. For the purpose of introducing selection markers into the isolated plasmids, the tsr fragmemt of pIJ702 was inserted into the BclI site of pJY 501 and pJY711. And the recombinant plasmids constructed designated as pJY502 and pJY712 respectively.

  • PDF

Reactive Ion Scattering Study of Ice Surfaces. Proton Transfer and H/D Exchange Reactions

  • Mun, Ui-Seong;Kim, Su-Yeon;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.64-64
    • /
    • 2010
  • Ice film surfaces were examined by using the reactive ion scattering (RIS) of low energy (<35 eV) cesium ion beams. Neutral molecules (X) on the surface were detected in the form of cesium-molecule ion clusters (CsX+). Ionic species on the surface were desorbed from the surface via a low energy sputtering (LES) process below the threshold energy of secondary ion emission. The RIS and LES methods allowed us to study the H/D exchange reactions between H2O and D2O molecules on the surface and the associated proton transfer mechanisms. Specifically, H/D exchange kinetics was examined for D2O ice films (~10 BL) covered with a small amount of H2O (<0.5 BL), in the presence or absence of HCl adsorbates which provided excess protons on the surface.

  • PDF

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

Structure Determination of D-Asparagine by Modified Pseudospectral Hartree-Fock Gradient Method

  • Lee, Jung-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 1994
  • Pseudospectral Hartree-Fock(PSHF) gradient calculations with $6-31G^{**}$ basis set have been carried out to determine the structure of D-Asparagine molecule $(C_4N_2O_3H_8)$ with improved grids and with the BFGS method. The modified PSHF method, despite partial optimization of the gradient code, turned out to be still faster than the conventional ab initio method, GAUSSIAN 90 program by more than twice. The optimum geometry of D-Asparagine obtained by the PSHF method is in good agreement with those calculated by the GAUSSIAN 90 program (within 0.0036 ${\AA}$ for bond lengths, 0.8 degrees for bond angles, and 1.6 degrees for torsional angles) except for three torsional angles. Here, rather large discrepancy of these three torsional angles (5-6 degrees) is attributed to the small differences in the optimum bond lengths and angles between the PSHF and GAUSSIAN 90 calculations.

Laser-Induced Fluorescence Excitation Spectrum and $CF_3$ Torsional Potential Energy Function of 7-Amino-4-(trifluoromethyl)coumarin in Its $S_1$ Electrode Excited State

  • 추재범;김택수;최영식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.461-463
    • /
    • 1996
  • The laser-induced fluorescence excitation spectrum of 7-amino-4-(trifluoromethyl)coumarin in a supersonic jet has been recorded in the 340-352 nm region. The electronic band origin was observed at 28622.8 cm-1. Vibrational assignments for the three fundamental low-frequency modes and eight combination bands have been made for the S1 electronic excited state. The out-of-plane vibrations of this molecule have been characterized from the low-frequency assignments of the spectrum. The periodic potential energy function for the CF3 torsion, which satisfactorily fits the observed data, were also determined to be V(Φ)=95X(1-cos3Φ)-32X(1-cos6Φ) where Φ is the torsional angle. The relatively low torsional barrier of 99 cm-1 in S1 state could be explained by the small steric interactions between the functional groups attached to a bicyclic ring.