• 제목/요약/키워드: Small lens molding system

검색결과 11건 처리시간 0.033초

소형렌즈 성형시스템의 힘제어에 관한 연구 (Force Control of Small Lens Molding System)

  • 김갑순;국금환;신희준;김현민;정동연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1091-1096
    • /
    • 2007
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of a electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, and the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

  • PDF

소형렌즈 성형시스템 개발 및 힘제어에 관한 연구 (Development of Molding System for Manufacturing a Small Lens and Its Force Control)

  • 국금환;정동연;김갑순
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.57-64
    • /
    • 2008
  • This paper describes the development of a small lens molding system for manufacturing the small lens like lens of a cellular phone, a small digital camera and so on. In order to manufacture a small lens, firstly, the raw material for lens with spherical shape should be manufactured by processing a glass material, secondly, the mold inserted the raw material for lens should be heated till its molding temperature in the electric furnace, finally, the small lens is manufactured by applying the force using pressuring control system. In this paper, the small lens molding system with the function of force control and velocity control was developed. It is composed of an electric furnace and its temperature control system, a pressuring control system, a body, and so on. The temperature characteristic test of the electric furnace, the force and velocity characteristic test of the pressuring control system were carried out. It was confirmed that the developed system had good functions for manufacturing a small lens.

전도방식 순차제조 비구면 렌즈 제조시스템 개발 (Development of a Convective Sequential Production System for Aspheric Lens)

  • 국금환;김갑순;정동연
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.202-210
    • /
    • 2011
  • The fabrication method of aspheric lens is changed from machining to press molding so as to improve the productivity. In the case of the press molding method, the temperature control of the molding die is most important, because the temperature of each molding die determines the quality of lens. But any practical method for direct measuring of the lens temperature and the die internal temperature is yet unknown. Besides, in the case of the press molding system in which the heating and pressing and cooing of a die is done at separate work stations, the lens productivity of the system for small lens is yet too low. The paper shows an improved structure of convective sequential system, the lens productivity of which is three times as many as the conventional convective system. To know the die internal temperature, numerical results are given using ANSYS. A new convective sequential system is developed and tested. Finally, the Taguchi method is applied in order to optimize the setting conditions of individual work station of the system.

초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작 (Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

소형 복사방식 순차제조 비구면 렌즈 제조시스템 개발 (Development of a Small Radiant Sequential Production System for Aspheric Lens)

  • 국금환;정준효
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.67-74
    • /
    • 2010
  • The fabrication method of aspheric lens is changed from machining to press molding so as to improve the productivity. In the case of the press molding method, the temperature control of the molding die is most impotent, because the temperature of each molding die determines the quality of lens. But any practical method for direct measuring of the lens temperature and the die internal temperature is yet unknown. Besides, in the case of the press molding system in which the heating and pressing and cooing of a die is done at one work station, the cycle time for the system is yet too long. The paper shows an improved structure of radiant sequential system in which the heating and pressing and cooing of dies is done at individual work station so as to cut down the cycle time. To know the die internal temperature, numerical results are given using ANSYS. An experimental radiant sequential system is developed and tested. Finally, the Taguchi method is applied in order to optimize the setting conditions of individual work station.

초정밀 사출렌즈 금형 기술 (Mold Technology for Precision Injection Lens)

  • 하태호;조형한;송준엽;전종
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.561-567
    • /
    • 2014
  • Precision injection mold is an essential element in order to manufacture small and precision plastic lenses used for phone camera. There are many critical factors to meet the requested specifications of high quality plastic lenses. One of the main issues to realize high quality is minimizing decenter value, which becomes more critical as pixel numbers increases. This study suggests the method to minimize decenter value by modifying ejecting structure of the mold. Decenter value of injection-molded lens decreased to 1 ${\mu}m$ level from 5 ${\mu}m$ by applying suggested ejecting method. Also, we also developed BIS (Built-in Sensor) based smart mold system, which has pressure and temperature sensors inside of the mold. Pressure and temperature profiles from cavities are obtained and can be used for deduction of optimal injection molding condition, filling imbalance evaluation, status monitoring of injection molding and prediction of lens quality.

초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발 (Fabrication of diffractive optical element for objective lens of small form factor data storage device)

  • 배형대;임지석;정기봉;한정원;유준모;박노철;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.35-40
    • /
    • 2005
  • The demand for small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable for mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-molding process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the shapes of master, mold and molded pattern were measured by optical scanning profiler. The deviation between the master and the molded DOE was less than 0.1um. The efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

  • PDF

다수 캐비티의 사출성형품에서 충전의 불균형과 치수편차의 고찰 (Investigation the tilling imbalance and dimensional variations of multi-cavity injection molded parts)

  • 강민아;김영경;김준민;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.266-270
    • /
    • 2007
  • Small injection molded articles such as lens and mobile product's parts are usually molded in multi-cavity mold. The problems occurred in multi-cavity molding are flow imbalance among the cavities. The flow imbalance affects on the dimensions and physical properties of molded articles. First of all, the origin of flow imbalance is geometrical imbalance of delivery system. However, even the geometry of delivery system is balanced well the cavity imbalance is being developed. This comes from the unsuitable operational conditions of injection molding. Among the operational conditions, injection speed is the most significant process variable affecting the filling imbalances in multi-cavity injection molding. In this study, experimental study of flow imbalance has been conducted for various injection speeds and materials. Also, the filling Imbalances were compared with CAE results. The dimensions and physical state of multi-cavity molded parts were examined. The results showed that the filling imbalances vary according to the injection speed and flow property of resins. Subsequently, the imbalanced filling and pressure distribution in the multi-cavity affect on the dimensions and physical states of molded parts.

  • PDF

칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작 (Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass)

  • 오승은;이선규;최중규;송국현;백종식
    • 한국광학회지
    • /
    • 제23권4호
    • /
    • pp.154-158
    • /
    • 2012
  • 본 논문에서는 적외선 광학장비의 가격 경쟁력을 확보하고자 상대적으로 저렴한 비용으로 제작이 가능한 PGM(Precision Glass Molding) 가공 렌즈로 구성된, 비냉각형 검출기용 적외선 광학계를 설계 및 제작하였다. PGM 가공이 가능하도록 광학계의 모든 렌즈에 칼코게나이드 유리(Chalcogenide Glass) 소재를 사용하였으며, 자체 비열화가 구현되도록 설계하였다. 또한 기존 가공법인 SPDT(Single Point Diamond Turning) 방법으로 제작된 렌즈로, 동일한 광학계를 구성하여 PGM 가공 렌즈의 성능 측정에 사용하였다. 제작된 두 광학계의 변조전달함수(MTF) 측정 결과와 실제 영상의 촬영 결과를 비교하여 분석한 결과, 가공 방법에 따른 렌즈의 성능 차이는 그리 크지 않음을 확인할 수 있었다. 따라서 향후 PGM 가공 렌즈의 사용이 증가하면, 적외선 광학장비의 가격 경쟁력이 향상될 것으로 기대된다.

다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰 (Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts)

  • 강민아;류민영
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.501-508
    • /
    • 2008
  • 렌즈나 휴대폰 부품 같은 소형 플라스틱 부품들은 일반적으로 다수 캐비티 사출금형에서 성형된다. 이러한 다수 캐비티 금형에서의 사출성형은 캐비티간의 충전 불균형이 일어날 수 있다. 이러한 충전 불균형 현상은 제품의 치수 및 중량의 편차뿐 아니라 제품의 물리적 특성에도 영향을 미친다. 충전 불균형은 무엇보다도 기하학적으로 균형 잡히지 않은 delivery system의 설계에서 기인된다. 하지만 delivery system이 기하학적으로 균형 있게 설계가 되었다 하더라도 충전 불균형 현상은 여전히 발생된다. 이러한 현상은 런너 단면에서의 온도분포에 기인하며 사출성형 공정 중 사출속도에 크게 영향을 받는 것으로 본 연구에서 파악되었다. 즉 충전 불균형은 부적절한 사출 성형 공정에 의해 발생되며 성형 공정 조건 중 사출속도는 충전에 영향을 주는 매우 중요한 요소이다. 본 연구에서는 재료와 사출 속도에 따른 충전 불균형 현상을 실험과 CAE을 통하여 관찰하였다. 사출속도 변화에 따른 충전 불균형 때문에 시편의 치수 및 무게가 불균일함을 확인하였다.