• Title/Summary/Keyword: Small induction motor

Search Result 126, Processing Time 0.026 seconds

A study on the speed control of ship propulsion induction motor using improved AFE rectifier

  • HUR, Jae-Jung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • This paper proposes a possibility of using active front-end rectifier with the SVPWM method for induction motor speed control, which is applicable to small electric propulsion boats. The proposed method can produce a more precise sinusoidal input current waveform and a higher power factor than conventional methods. Its speed, torque, input current, DC voltage, and load current control performance are similar to or better than those of conventional methods. Through computer simulations using the PSIM program, the validity of the proposed method was verified by comparing and analyzing the characteristics of the conventional methods and the proposed method.

Sensorless Vector Control of Induction Motor Using Neural Networks (신경망을 이용한 유도전동기 센서리스 벡터제어)

  • Park, Seong-Wook;Choi, Jong-Woo;Kim, Heung-Geun;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Many kinds of speed sensorless control system of induction motor had been developed. But it is difficult to implement at the real system because of complex algorithm and equations. This paper investigates a novel speed sensorless control of induction motor using neural networks. The proposed control strategy is based on neural networks using stator current and output of neural model based on state observer. The errors between the stator current and the output of neural model are back-propagated to adjust the rotor speed, so that adaptive state variable will coincide with the desired state variable. This algorithm may overcome several shortages of conventional model, such as integrator problems, small EMF at low speed and relatively large sensitivity of stator resistance variation. Also, this paper presents a newly developed optimal equation about the momentum constant and the learning rate. The proposed algorithms are verified through simulation.

Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Lee, Gong-Hee;Im, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF

Analysis for Operation Characteristics of Induction Motor at Asymmetric Voltage Unbalance (비대칭 전압 불평형에 의한 유도전동기의 동작특성 해석)

  • Kim Jong-Gyeum;Park Young-Jin;Lee Eun-Woong;Kim Il-Jung;Sohn Hong-Kwan;Jeong Jong-Ho;Lee Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.791-793
    • /
    • 2004
  • Voltage unbalance is generated by the load and impedance mismatching at the 3-phase 4-wire system of customer load. Voltage unbalance factor can be changed by the voltage amplitude or phase angle, and both. A small voltage unbalance is connected to high current unbalance. If the voltage unbalance is generated at the joint system of 1-phase and 3-phase load, Induction motor due to the current unbalance increase is generated loss, noise and torque ripple. In order to analyze the effect by voltage unbalance, it is necessary to the consideration of amplitude and phase angle. In this paper, We analyzed the effects that induction motor is affected by asymmetric voltage unbalance

  • PDF

Robust Speed Controller of Induction Motor using Neural Network-based Self-Tuning Fuzzy PI-PD Controller

  • Kim, Sang-Min;Kwon, Chung-Jin;Lee, Chang-Goo;Kim, Sung-Joong;Han, Woo-Youn;Shin, Dong-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.1-67
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PI-PD control scheme for robust speed control of induction motor. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PI-PD controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small ...

  • PDF

Development of Torque Monitoring System of Induction Spindle Motor using Graphic-programming (Graphic-programming 을 이용한 주축용 유도전동기의 토크감시시스템 개발)

  • Lee, In-Hwan;Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.184-193
    • /
    • 2001
  • In vector control technique, stator currents of an induction motor are transformed to equivalent d-q currents in a reference frame consist of d and q axis, each of which is coincide with flux and torque direction respectively. Since the current in q-axis is related to the torque in a synchronously rotating frame, torque is estimated as a function of q-axis current and flux. In this paper, a method to estimate torque of an induction motor based on the measurement of 3-phase currents and rotating velocity of a rotor is presented. Graphic-programming is used to measure signals, to estimate the torque and to show the result in the form of user friendly graph in window environment. To stabilize the fluctuation of estimated torque caused from the small measurement error of the rotor velocity, the stator current is reconstructed in a program based on measured signals. The experimental results executed under the velocity of 500 rpm, 1500 rpm without load and 1500 rpm with load show that the proposed method estimates the torque very well.

  • PDF

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

The Performance Evaluation and the Design of Controller for the Highly Efficient BLDC Motor using Numerical Analysis (수치해석에 의한 고효율 BLDC 모터의 제어기 설계 및 성능평가에 관한 연구)

  • Woo, Chun-Hee;Park, Gun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • This thesis focuses on the design of control schemes for highly efficient BLDC motor drive applications using drives with output capacity of 1Hp. The control system was designed and implemented on a PIC micro-controller and applied to an electric vehicle as a viable replacement to the existing a high phase induction motor that is currently being used for these low cost, small traction drive applications. This paper for the brushless drive research has shown the optimization of the drive system for improved drive design and switching techniques that can improve the entire drive system efficiency for electric vehicle both large and small traction applications using sinusoidal PWM techniques for synthesizing the AC waveforms needed to control these traction drives. In addition, Numerical simulation was conducted to evaluate the performance of designed BLDC Motor using MotorPro simulator.

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.