• Title/Summary/Keyword: Small field dosimetry

Search Result 43, Processing Time 0.035 seconds

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

A Study on the dosimetry in boundary of shielding block in high energy irradiation (고에너지 방사선치료에서 차폐물 경계부위의 선량분포에 관한 고찰)

  • Kim, Myung-Se;Kim, Sung-Kyu;Shin, Sei-One
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Scatter-air ratios are used for the purpose of calculating scattered dose in the medium. The computation of the primary and the scattered dose separately is particularly useful in the dosimetry of irregular fields with shielding block in radiation field, dose distribution of scattered radiation using 18MeV Linear accelerator and Co-50 teletherapy measured. The effect of scattered radiation dose by protecting block was been ignored in radiation therapy, 2-3% of scattered radiation may be 90-200 cGy which could be influence vitial complications such as cataract, oligospermia or sterility. So that exect calculation of such scattered radiation especially for large field $\bar{c}$ small protection of vitial organ is very important. The purpose of this article is to calculate scattered radiation by protecting block exactly for irregular field $\bar{c}$ Linac or Co-60 irradiation and to applicate these data in clinical radiation field. Authors could obtain following results. 1. The lesser angle between shielding block showed more scattered radiation. 2. With decreasing distance between shielding blocks, the dependent of scattered radiation were increased. 3. Output of 18MeV Linear accelerator and Co-60 was related linear proportion on field size, but independent according to the size of shielding block in 18MeV Linear accelerator.

  • PDF

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

Study on the multi-channel dosimetry system with microprocessor and its application to radition therapy (마이크로 프로세서를 이용한 선량측정 장치의 제작과 그 응용에 관한 연구)

  • 강정구;이정옥;김승곤;김부길;김진기
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 1992
  • We have desingned multi channel dosimetry system with Intel single-chip microprocessor. We considered that this system is very useful for patient dose measurement, measurement of sealed source dose distribution and calibration of small field for stereotatic radiosurgery system We have designed that this system use commercially available semicondutor detector and personal computer can control this system and process data through RS-232C serial port.

  • PDF

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.

The Construction of Solid State Detector System Using Commercially Available Diode and Its Application (정류기형 다이오드를 이용한 반도체 방사선 검출 장치의 제작과 그 응용에 관한 연구)

  • 신동오;홍성언;이병용;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.91-95
    • /
    • 1990
  • The solid state detector system was constructed using commercially available rectifier diode for the assessment of quality assurance in radiotherapy. Dosimetry system which consists of the electrometer and the water phanton was used for measuring small field size scanning. The measured results, which had linearity in accordance with variation of radiation dose for gamma-ray of Co- 60 and 6 and 10MV photons of linear accelerator, showed quite linear characteristics within 1% error. The percent depth dose of 10MV photon of Mevatron KD linear accelerator was measured in small field size using diode, and the results were compared with that of using ion chambers. The results show that the difference of percent depth dose between the value of diode and that of ion chamber was negligible in large field size. However, in small size less than 4$\times$4cm, the difference of percent depth dose estimated by diode and ion chamber was 4.7% by extrapolation to 0$\times$0cm. Considering the smaller volume of diode than that of ion chamber, it might be more reliable to use diode for estimating percent depth dose. Above results suggest that diode can be used for routine check such as beam profile, flatness, symmetry and energy

  • PDF

Film Dosimetry for Intensity Modulated Radiation Therapy : Dosimetric Evaluation (필름을 사용한 세기변조치료법에 대한 선량측정)

  • Ju Sang Gyu;Yeo Inhwan Jason;Huh Seung Jae;Choi Byung Ki;Park Young Hwan;Ahn Yong Chan;Kim Dae Yong;Kong Young Kun
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Purpose : X-ray film over responds to low-energy photons in relative photon beam dosimetry because its sensor is based on silver bromide crystals, which are high-Z molecules. This over-response becomes a significant problem in clinical photon beam dosimetry particularly in regions outside the penumbra. In intensity modulated radiation therapy (IMRT), the radiation field is characterized by multiple small fields and their outside-penumbra regions. Therefore, in order to use film dosimetry for IMRT, the nature the source of the over-response in its radiation field need to be known. This study is aimed to verify and possibly improve film dosimetry for IMRT. Materials and Method : Modulated beams were constructed by a combination of five or seven different static radiation fields using 6 MeV X-rays. In order to verify film dosimetry, we used X-ray film and an ion chamber were used to measure the dose profiles at various depths in a phantom. In addition, in order to reduce the over-response, 0.01 inch thick lead filters were placed on both sides of the film. Results : The measured dose profiles showed a film over-response at the outside-penumbra and low dose regions. The error increased with depths and approached 15% at a maximum for the field size of $15{\times}15cm^2$ at 10 cm depth. The use of filters reduced the error to 3%, but caused an under-response of the dose in a perpendicular set-up. Conclusion : This study demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy Photons. The use of filers can enhance the accuracy in film dosimetry for IMRT. In this regard, the use of optimal filter conditions is recommended.

Evaluation of the Radiochromic Film Dosimetry for a Small Curved Interface (휘어진 경계에서의 좁은 영역에 대한 Radiochromic 필름 도시메트리 평가)

  • Kang, Sei-Kwon;Park, Soah;Hwang, Taejin;Cheong, Kwang-Ho;Han, Taejin;Kim, Haeyoung;Lee, Me-Yeon;Kim, Kyoung Ju;Bae, Hoonsik
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • A tumor on the eyelid is often treated using a high-energy electron beam, with a metallic eye shield inserted between the eyelid and the eyeball to preserve the patient's sight. Pretreatment quality assurance of the inner eyelid dose on the metallic shield requires a very small dosimetry tool. For enhanced accuracy, a flexible device fitting the curved interface between the eyelid and the shield is also required. The radiochromic film is the best candidate for this device. To measure the doses along the curved interface and small area, a 3-mm-wide strip of EBT2 film was inserted between the phantom eyelid and the shield. After irradiation with 6 MeV electron beams, the film was evaluated for the dose profile. An acrylic eye shield of the same size as the real eye shield was machined, and CT images free from metal artifacts were obtained. Monte Carlo simulation was performed on the CT images, taking into account eye shield material, such as tungsten, aluminum, and steel. The film-based interface dose distribution agreed with the MC calculation within 2.1%. In the small (millimeter scale) and curved region, radiochromic film dosimetry promises a satisfactory result with easy handling.

Dosimetric Characteristics of Edge $Detector^{TM}$ in Small Beam Dosimetry (소조사면 선량 계측을 위한 엣지검출기의 특성 분석)

  • Chang, Kyung-Hwan;Lee, Bo-Ram;Kim, You-Hyun;Choi, Kyoung-Sik;Lee, Jung-Seok;Park, Byung-Moon;Bae, Yong-Ki;Hong, Se-Mie;Lee, Jeong-Woo
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • In this study, we evaluated an edge detector for small-beam dosimetry. We measured the dose linearity, dose rate dependence, output factor, beam profiles, and percentage depth dose using an edge detector (Model 1118 Edge) for 6-MV photon beams at different field sizes and depths. The obtained values were compared with those obtained using a standard volume ionization chamber (CC13) and photon diode detector (PFD). The dose linearity results for the three detectors showed good agreement within 1%. The edge detector had the best linearity of ${\pm}0.08%$. The edge detector and PFD showed little dose rate dependency throughout the range of 100~600 MU/min, while CC13 showed a significant discrepancy of approximately -5% at 100 MU/min. The output factors of the three detectors showed good agreement within 1% for the tested field sizes. However, the output factor of CC13 compared to the other two detectors had a maximum difference of 21% for small field sizes (${\sim}4{\times}4\;cm^2$). When analyzing the 20~80% penumbra, the penumbra measured using CC13 was approximately two times wider than that using the edge detector for all field sizes. The width measured using PFD was approximately 30% wider for all field sizes. Compared to the edge detector, the 10~90% penumbras measured using the CC13 and PFD were approximately 55% and 19% wider, respectively. The full width at half maximum (FWHM) of the edge detector was close to the real field size, while the other two detectors measured values that were 8~10% greater for all field sizes. Percentage depth doses measured by the three detectors corresponded to each other for small beams. Based on the results, we consider the edge detector as an appropriate small-beam detector, while CC13 and PFD can lead to some errors when used for small beam fields under $4{\times}4\;cm^2$.

  • PDF