• Title/Summary/Keyword: Small angle X-ray scattering

Search Result 84, Processing Time 0.025 seconds

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery (마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용)

  • Kim, Eudem;Kwon, Soon Hyung;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Gas Separation Membranes Containing $Re_6Se_8(MeCN)_6^{2+}$ Cluster-Supported Cobalt-Porphyrin Complexes

  • Park Su Mi;Won Jongok;Lee Myung-Jin;Kang Yong Soo;Kim Se-Hye;Kim Youngmee;Kim Sung-Jin
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.598-603
    • /
    • 2004
  • Cellulose nitrate (CN) composite membranes, containing cobalt porphyrin (CoP) complexes self-assembled within nanometer-sized rhenium clusters (ReCoP), have been prepared and their oxygen and nitrogen gas perme­abilities were analyzed. The solubility of ReCoP and the characteristics of the corresponding composite membranes were analyzed using a Cahn microbalance, FT-IR spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry. The nitrogen permeability through the CN composite membranes decreased upon addition of ReCoP and CoP, which implies that the presence of these oxygen carrier complexes affects the structure of the polymer matrix. The oxygen permeability through the composite membranes containing small quantities of ReCoP decreased, but it increased upon increasing the concentration. The oxygen gas transport was affected by the matrix at low ReCoP concentrations, but higher concentrations of ReCoP increased the oxygen permeability as a result of its reversible and specific interactions with oxygen, effectively realizing ReCoP carrier-mediated oxygen transport.

Structural Changes of Biodegradable Poly(tetramethylene succinate) on Hydrolysis

  • Shin, Jick-Soo;Yoo, Eui-Sang;Im, Seung-Soon;Song, Hyun-Hoon
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.210-219
    • /
    • 2001
  • Quenched and slow cooled as well as isothermally crystallized poly(tetramethylene succinate)(PTMS) films at two different temperatures were prepared. In the process of hydrolysis of the four specimens, structural changes such as the crystallinity, crystal size distribution, lattice parameter, lamellar thickness, long period and surface morphology were investigated by using wide and small angle X-ray scattering (WAXS and SAXS), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The hydrolytic degradation of quenched film was faster than that of slow cooled and isothermally crystallized films. The film crystallized at 100$\^{C}$ exhibited extensive micro voids and thus showed faster degradation than that crystallized at 75$\^{C}$, demonstrating surface morphology is another important factor to govern degradation rate. The crystallinity of the specimen increased by 5-10% and long period decreased after hydrolysis for 20 days. At the initial stage of degradation, the lamellar thickness of quenched film rather increased, while that of slow cooled and isothermally crystallized films decreased. The hydrolytic degradation preferentially occurred in the amorphous region. The hydrolytic degradation in crystal lamellae are mainly at the crystal surfaces.

  • PDF

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • Kim, Tae-Hyeon;Park, Han-Beom;Jeong, Gwang-Sik;Chae, Jae-Min;Hwang, Su-Bin;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF

Effects of Physico-chemical Factors of Sol on the Degree of Preferred Orientation in $Pb(Mg, Zn)_{1/3}Nb_{2/3}O_3$ Thin Films (Sol의 물리화학적 변수들이 $Pb(Mg, Zn)_{1/3}Nb_{2/3}O_3$ 박막의 우선 배향성에 미치는 효과)

  • 조문규;장현명;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.305-312
    • /
    • 1995
  • Thin films of Pb(Mg, Zn)1/3Nb2/3O3 were fabricated by spin coating the Pb-Mg-Zn-Nb-O complex alkoxide sols on(111) Pt-coated MgO (100) planes. It was observed that the content of H2O and the rheological characteristics of sol greatly influenced the orientation of perovskite grains after thin-film formation. A strong preferential orientation of (100)-type planes of the perovskite grains was obtained for the sol aged for 15 days with the molar ratio of H2O to total metal alkoxides=2. As small angle X-ray scattering experiment in the Porod region was performed to correlate the observed preferential orientation with the network structure of precursors at various stage of aging. It was shown that the degree of branching of the Pb-Mg-Zn-Nb-O precursor chain had a direct effect on the preferred oreintation, and weakly branched precursor systems led to highly oriented grains after thin-film formation.

  • PDF

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D.;Rosler, J.;Wehrs, J.;Eckerlebe, H.;Gilles, R.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.205-219
    • /
    • 2012
  • Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.

Synthesis and Characterization of Cu2+-Perfluorophthalocyanine Incorporated SBA15

  • Oh, Mi-Ok;Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.10-15
    • /
    • 2006
  • After anchoring 3-(2-aminoethylamino)propyltriethoxysilane (APTES) onto the surfaces of the channels within ordered mesoporous silica, SBA-15, we dispersed $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. From small-angle X-ray scattering (SAXS) patterns and transmission electron microscopy (TEM) images, we confirmed that both the calcined and $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples possessed ordered periodic structures and hexagonal symmetry lattices (p6mm). The value of the $d_{100}$ spacing was decreased after the incorporation of $Cu^{2+}$-perfluorophthalocyanine into the modified SBA-15 channels. We used FTIR and UV-Vis spectroscopy and thermogravimetric analysis (TGA) to characterize both the modified SBA-15 and the $Cu^{2+}$-perfluorophthalocyanine-incorporated SBA-15 samples. From scanning electron microscopy (SEM) images and $N_2$ sorption measurements, we found that the $Cu^{2+}$-perfluorophthalocyanine units were incorporated within the modified SBA-15 channels, rather than on the external surfaces of the modified SBA-15 channels.

  • PDF

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

  • Shin, Young-Hak;Lee, Wan-Duk;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.662-670
    • /
    • 2007
  • The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.

Crystal structure and thermal properties of solution crystallized nylon 4,6 (용액 결정성장하의 Nylon 4,6 의 결정구조 및 열적성질)

  • 김연철;홍성권
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.99-100
    • /
    • 1993
  • Calorimetric (D.S.C) studies were carried out on the nylon 4,6 single crystals grown from 1,4-butanediol solution at various crystallisation temperatures, based on the assessment of the lamellar thickness by small angle x-ray scattering. Samples were annealed mainly ot get rid of residual solvents inside the crystals. The effect of annealing on the crystal perfection is inferred from the measured thermal properties of the crystals. Accordig to the scanning rates less than 80 K/min., D. S C. melting peaks indicate that changes in the internal morphology of nylon 4,6 crystals preapred at different crystallisation temeratures yield a thermodynamic melting temperature. Tm, of 319 $^{\circ}C$, for the infinitely extended crystal thickness (1/ι). The obtained heat of fusion value for the inginite crystal thickness, Ho, was 270 J/g from the plot of measured feat of fusion ($\Delta$Hm) vs. reciprocal crystal thickness (1/ι). based on these values, the fold surface energy, $\delta$e. of 65.4 erg/$\textrm{cm}^2$ was obtained from Hoffman-Waeeks equation. The thermodynamic melting temperature and heat of fusion of the infinite crystal thickness for the solution grow nylon 4,6 single crystals are found to be higher than of the reported corresponding solution grown nylon 6,6 single crystals. pbtained crystallinity from D. S. C measurements ranges from 40 to 50 %, which is close to the reported yalue for the nylon 6,6 single ctystals but lower than we expected.

  • PDF

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries

  • Chung, Yeon-Wook;Lee, Byung-Ill;Cho, Byoung-Ki
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.