Browse > Article

Thermal and Solid State Assembly Behavior of Amphiphilic Aliphatic Polyether Dendrons with Octadecyl Peripheries  

Chung, Yeon-Wook (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University)
Lee, Byung-Ill (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University)
Cho, Byoung-Ki (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Macromolecular Research / v.16, no.2, 2008 , pp. 113-119 More about this Journal
Abstract
A series of amphiphilic dendrons n-18 (n: generation number, 18: octadecyl chain) based on an aliphatic polyether denderitic core and octadecyl peripheries were synthesized using a convergent dendron synthesis consisting of a Williamson etherification and hydroboration/oxidation reactions. This study investigated their thermal and self-assembling behavior in the solid state using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) absorption spectroscopy, and small angle X-ray scattering (SAXS). DSC indicated that the melting transition and the corresponding heat of the fusion of the octadecyl chain decreased with each generation. FT-IR showed that the hydroxyl focal groups were hydrogen-bonded with one another in the solid state. DSC and FT-IR indicated microphase-separation between the hydrophilic dendritic cores and hydrophobic octadecyl peripheries. SAXS data analysis in the solid state suggested that the lower-generation dendrons 1-18 and 2-18 self-assemble into lamellar structures based upon a bilayered packing of octadecyl peripheries. In contrast, the analyzed data of higher-generation dendron 3-18 is consistent with 2-D oblique columnar structures, which presumably consist of elliptical cross sections. The data obtained could be rationalized by microphase-separation between the hydrophilic dendritic core and hydrophobic octadecyl peripheries, and the degree of interfacial curvature associated with dendron generation.
Keywords
amphiphilic; dendrons; thermal property; solid state assembly;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev., 99, 1665 (1999)
2 H. D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, G. Johansson, G. Ungar, and V. S. K. Balagurusamy, Science, 278, 449 (1997)
3 A. Hirao, Y. Tsunoda, A. Matsuo, K. Sugiyama, and T. Watanabe, Macromol. Res., 14, 272 (2006)   과학기술학회마을   DOI
4 Y. Song, C. Park, and C. Kim, Macromol. Res., 14, 235 (2006)   과학기술학회마을   DOI
5 D. J. P. Yeardley, G. Ungar, V. Percec, M. N. Holerca, and G. Johansson, J. Am. Chem. Soc., 122, 1684 (2000)
6 J. C. M. van Hest, M. W. P. L. Baars, C. Elissen-Romn, M. H. P. van Genderen, and E. W. Meijer, Macromolecules, 28, 6689 (1995)
7 C. Romn, H. R. Fischer, and E. W. Meijer, Macromolecules, 32, 5525 (1999)
8 J. Iyer and P. T. Hammond, Langmuir, 15, 1299 (1999)
9 Y.-S. Yoo, J.-H. Choi, J.-H. Song, N.-K. Oh, W.-Z. Zin, S. Park, T. Chang, and M. Lee, J. Am. Chem. Soc., 126, 6294 (2004)
10 V. Balsamo, F. von Gyldenfeldt, and R. Stadler, Macromolecules, 32, 1226 (1999)
11 V. Percec, W.-D. Cho, G. Ungar, and D. J. P. Yeardley, J. Am. Chem. Soc., 123, 1302 (2001)
12 Analysis of the SAXS pattern was performed on the basis of the following equation: $q^2(2{\pi})^2=h^2/(asin{\gamma})^2hkcos{\gamma}/absin^2{\gamma}+K^2/(bsin{\gamma})^2$, where h and k are Miller indices of the scattering planes, a and b are unit cell basis vectors, and $\gamma$ is the angle between a and b ($0{\circ}{\prec}{\gamma}{\prec}180{\circ})$
13 B.-K. Cho and Y.-W. Chung, Bull. Korean Chem. Soc., 27, 29 (2006)
14 V. Percec, M. Peterca, M. J. Sienkowska, M. A. Ilies, E. Aqad, J. Smidrkal, and P. A. Heiney, J. Am. Chem. Soc., 128, 3324 (2006)   DOI   ScienceOn
15 J. H. Cameron, A. Facher, G. Lattermann, and S. Diele, Adv. Mater., 9, 398 (1997)   DOI
16 D. R. Dukeson, G. Ungar, V. S. K. Balagurusamy, V. Percec, G. Johansson, and M. Glodde, J. Am. Chem. Soc., 125, 15974 (2003)
17 D. Pavia, Introduction to Spectroscopy, Thomson Learning, 2001
18 C. Park, I. H. Lee, S. Lee, Y. Song, M. Rhue, and C. Kim, Proc. Natl. Acad. Sci. USA, 103, 1199 (2006)
19 G. Ungar, Y. Liu, X. Zeng, V. Percec, and W.-D. Cho, Science, 299, 1208 (2003)
20 Y. L. Loo, R. A. Register, and D. H. Adamson, J. Polym. Sci.; Part B: Polym. Phys., 38, 2564 (2000)
21 M. Jayaraman and J. M. J. FrZchet, J. Am. Chem. Soc., 120, 12996 (1998)   DOI
22 V. Percec, A. E. Dulcey, M. Peterca, P. Adelman, R. Samant, V. S. K. Balagurusamy, and P. A. Heiney, J. Am. Chem. Soc., 129, 5992 (2007)
23 A. P. H. J. Schenning, C. Elissen-Romn, J.-W. Weener, M. W. P. L. Baars, S. J. van der Gaast, and E. W. Meijer, J. Am. Chem. Soc., 120, 8199 (1998)
24 M. Fisher and F. Vsgtle, Angew. Chem. Int. Ed., 38, 884 (1999)
25 M. Surez, J.-M. Lehn, S. C. Zimmerman, A. Skoulios, and B. Heinrich, J. Am. Chem. Soc., 120, 9526 (1998)
26 B.-K. Cho, A. Jain, J. Nieberle, S. Mahajan, U. Wiesner, S. M. Gruner, S. TYrk, and H. J. RSder, Macromolecules, 37, 4227 (2004)
27 S. M. Grayson and J. M. J. FrZchet, Chem. Rev., 101, 3819 (2001)   DOI   ScienceOn
28 J. Iyer, K. Fleming, and P. T. Hammond, Macromolecules, 31, 8757 (1998)
29 Y. Kamikawa and T. Kato, Org. Lett., 8, 2463 (2006)
30 X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, Nature, 428, 157 (2004)
31 L. Gehringer, D. Guillon, and B. Donnio, Macromolecules, 36, 5593 (2003)
32 L. Gehringer, C. Bourgogne, D. Guillon, and B. Donnio, J. Am. Chem. Soc., 126, 3856 (2004)   DOI   ScienceOn
33 K. T. Kim, I. H. Lee, C. Park, Y. Song, and C. Kim, Macromol. Res., 12, 528 (2004)