• Title/Summary/Keyword: Small UAV

Search Result 236, Processing Time 0.023 seconds

Study on Flight Test of Small Solar-Powered UAV (소형 태양광 무인 항공기의 비행실험에 관한 연구)

  • An, Il-Young;Bae, Jae-Sung;Park, Sang-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

Distance estimation from ground for small VTOL UAV landing (소형 VTOL UAV 이착륙을 위한 지면과의 거리 추정)

  • Yun, Byoung-Min;Kim, Sang-Won;Cho, Sun-Ho;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.59-61
    • /
    • 2004
  • For automatic landing of small VTOL UAV, it is necessary to calculate the distance from the UAV and the ground. The distance can be generally measured by a ultra-sonic sensor, but the ultra-sonic sensor has errors according to velocity of a sensor board. To compensate these errors, we proposed a sensor fusion method using a Kalman filter.

  • PDF

A Study of Path-Finding Method of Small Unmanned Aerial Vehicles for Collision Avoidance (소형 무인비행체에서의 충돌회피를 위한 비행경로 생성에 관한 연구)

  • Shin, Saebyuk;Kim, Jinbae;Kim, Shin-Dug;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.76-80
    • /
    • 2017
  • With the fast growing popularity of small UAVs (Unmanned Aerial Vehicles), recent UAV systems have been designed and utilized for the various field with their own specific purposes. UAVs are opening up many new opportunities in the fields of electronics, sensors, camera, and software for pilots. Increase in awareness and mission capabilities of UAVs are driving innovations and new applications driven with the help of low cost and its capability in undertaking high threat task. In particular, small unmanned aerial vehicles should fly in environments with high probability of unexpected sudden change or obstacle appearance in low altitude situations. In this paper, current researches regarding techniques of autonomous flight of smal UAV systems are introduced and we propose a draft idea for planning paths for small unmanned aerial vehicles in adversarial environments to arrive at the given target safely with low cost sensors.

Privacy Protection from Unmanned Aerial Vehicle (무인항공기 사생활 보호 방안)

  • Lee, Bosung;Lee, Joongyeup;Park, Yujin;Kim, Beomsoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.1057-1071
    • /
    • 2016
  • Privacy-right infringement using unmanned aerial vehicle (UAV) usually occurs due to the unregistered small UAV with the image data processing equipment. In this paper we propose that privacy protection acts, Personal Information Protection Act, Information and Communications Network Act, are complemented to consider the mobility of image data processing equipment installed on UAV. Furthermore, we suggest the regulations for classification of small UAVs causing the biggest concern of privacy-right infringement are included in aviation legislations. In addition, technological countermeasures such as recognition of UAV photographing and masking of identifying information photographed by UAV are proposed.

Structural safety factor for small unmanned aircraft (소형 무인기 구조 안전계수)

  • Kim, Sung-Joon;Lee, Seung-gyu;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2017
  • Manned aircraft structural design is based on structural safety factor of 1.5, and this safety factor is equivalent to a probability of failure of between 10-2 and 10-3. The target failure probability of FARs is between 10-6 and 10-9 per flight according to aircraft type. NATO released STANAG 4703 to established the airworthiness requirements for small UAV which is less than 150kg. STANAG 4703 requires the Target Level of Safety according to MTOW. The requirements of failure probability for small UAV is between 10-4 and 10-5. In this paper, requirements of airworthiness certification for small UAV were investigated and the relationship of safety factors to the probability of structural failure is analyzed to reduce measure of safety factor and structural weight of unmanned aircraft.

A UAV Flight Control Algorithm for Improving Flight Safety (무인항공기 비행제어컴퓨터 알고리즘 개발을 통한 비행안전성 향상)

  • Park, Suncheol;Jung, Sungrok;Chung, Myungjin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.559-565
    • /
    • 2017
  • A UAV(unmanned aerial vehicle) requires higher reliability for external effects such as electromagnetic interference because a UAV is operated by pre-designed programs that are not under human control. The design of a small UAV with a complete resistance against the external effects, however, is difficult because of its weight and size limitation. In this circumstance, a conventional small UAV dropped to the ground when an external effect caused the rebooting of the flight-control computer(FCC); therefore, this paper presents a novel algorithm for the improvement of the flight safety of a small UAV. The proposed algorithm consists of three steps. The first step comprises the calibration of the navigation equipment and validation of the calibrated data. The second step is the storage of the calibration data from the UAV take-off. The third step is the restoration of the calibration data when the UAV is in flight and FCC has been rebooted. The experiment results show that the flight-control system can be safely operated upon the rebooting of the FCC.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Development of An Integrated Display Software Platform for Small UAV with Parallel Processing Technique (병렬처리 기법을 이용한 소형 무인비행체용 통합 시현 소프트웨어 플랫폼 개발)

  • Lee, Young-Min;Hwang, In-So;Lim, Bae-Hyeon;Moon, Yong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • An integrated display software platform for small UAV is developed based on parallel processing technique in this paper. When the small UAV with high-performance camera and avionic modules is employed to various surveillance-related missions, it is important to reduce the operator's workload and increase the monitoring efficiency. For this purpose, it is needed to develop an efficient monitoring software enable to manipulate the image and flight data obtained during flight within the given processing time and display them simultaneously. In this paper, we set up requirements and suggest the architecture for the software platform. The integrated software platform is implemented with parallel processing scheme. Based on AR drone, we verified that the various data are concurrently displayed by the suggest software platform.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

Small UAV Failure Rate Analysis Based on Human Damage on the Ground Considering Flight Over Populated Area (도심 지역 비행을 위한 지상 인명 피해 기반 소형무인기 고장 빈도 분석)

  • Kim, Youn-Sil;Bae, Joong-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.781-789
    • /
    • 2021
  • In this paper, we quantitatively analyzed the required UAV(Unmanned Aerial Vehicle) failure rate of small UAV (≤25kg) based on the harm to human caused by UAV crash to fly over the populated area. We compute the number of harm to human when UAV falls to the ground at certain descent point by using population density, car traffic, building to land ratio, number of floors of building data of urban area and UAV descent trajectory modeling. Based on this, the maximum allowable UAV failure rate is calculated to satisfy the Target Level of Safety(TLS) for each UAV descent point. Then we can generate the failure rate requirement in the form of map. Finally, we divide UAV failure rate into few categories and analyze the possible flight area for each failure rate categories. Considering the Youngwol area, it is analyzed that the UAV failure rate of at least 10-4 (failure/flight hour) is required to access the residential area.