DOI QR코드

DOI QR Code

A UAV Flight Control Algorithm for Improving Flight Safety

무인항공기 비행제어컴퓨터 알고리즘 개발을 통한 비행안전성 향상

  • 박순철 (국방기술품질원 항공2팀) ;
  • 정성록 (국방기술품질원 항공2팀) ;
  • 정명진 (국방기술품질원 항공2팀)
  • Received : 2016.12.08
  • Accepted : 2017.02.15
  • Published : 2017.06.15

Abstract

A UAV(unmanned aerial vehicle) requires higher reliability for external effects such as electromagnetic interference because a UAV is operated by pre-designed programs that are not under human control. The design of a small UAV with a complete resistance against the external effects, however, is difficult because of its weight and size limitation. In this circumstance, a conventional small UAV dropped to the ground when an external effect caused the rebooting of the flight-control computer(FCC); therefore, this paper presents a novel algorithm for the improvement of the flight safety of a small UAV. The proposed algorithm consists of three steps. The first step comprises the calibration of the navigation equipment and validation of the calibrated data. The second step is the storage of the calibration data from the UAV take-off. The third step is the restoration of the calibration data when the UAV is in flight and FCC has been rebooted. The experiment results show that the flight-control system can be safely operated upon the rebooting of the FCC.

무인항공기는 사람이 탑승하지 않고 미리 설계된 프로그램에 따라 동작하기 때문에 전자기 간섭 등의 외부 영향에 대해 높은 신뢰성을 요구한다. 하지만 소형 무인항공기는 무게 및 공간의 제약으로 인해 외부 영향에 대해 물리적으로 완벽한 저항성을 가지도록 만들기가 어렵다. 이러한 여건으로 인해 기존에 운용 중인 소형 무인항공기는 외부 영향으로 비행제어 컴퓨터가 재시작 될 경우 비행체가 추락하는 상황이 발생하기도 하였다. 따라서 본 논문에서는 소형 무인항공기 비행안전성 향상을 위한 비행제어컴퓨터 알고리즘을 제안한다. 제안하는 알고리즘은 3개의 단계로 이루어져 있다. 첫 번째 단계는 항법장비를 교정하고 유효성을 검증하는 것이다. 두 번째 단계는 이륙단계에 교정데이터를 저장하는 것이다. 세 번째 단계는 비행제어컴퓨터 재시작 발생 시 현재 비행 상태를 판단하고, 비행 중일 경우에 교정데이터를 복구하는 것이다. 제안하는 알고리즘을 실제 소형 무인기에 적용하여 시험한 결과 비행제어컴퓨터가 재시작 되는 상황에도 안전하게 비행 유지가 가능함을 확인할 수 있었다.

Keywords

References

  1. I. Bayir, "A glimpse to future commercial spy satellite systems," Proc. of the 2009 4th International Conference on Recent Advances in Space Technologies, Istanbul, pp. 370-375, 2009.
  2. R. B. Colton, "Radar in the United States Army History and Early Development at the Signal Corps Laboratories, Fort Monmouth, N.J.," Proc. of the IRE, Vol. 33, No. 11, pp. 740-753, Nov. 1945. https://doi.org/10.1109/JRPROC.1945.231560
  3. C. J. Smith and N. W. Taylor, "Controlling UAS flight operations in a mixed-mode environment today," Proc. of the 2013 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, pp. 1-8, 2013.
  4. Z. Chen, J. Luo, H. Jiang and W. Shi, "Design & application of MIS on UAV quality & reliability for total life span," Proc. of the 2009 8th International Conference on Reliability, Maintainability and Safety, Chengdu, pp. 1290-1292, 2009.
  5. G. P. Kladis, J. T. Economou, K. Knowles, A. Tsourdos and B. A. White, "Digraph matrix reliability analysis for fault assessment for A UAV platform application, A fault-tree analysis approach," Proc. of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, pp. 1-6, 2008.
  6. R. W. Beard, T. W. McLain, M. A. Goodrich and E. P. Anderson, "Coordinated target assignment and intercept for unmanned air vehicles," IEEE Transactions on Robotics and Automation, Vol. 18, No. 6, pp. 911-922, Dec. 2002. https://doi.org/10.1109/TRA.2002.805653
  7. E. P. Udartsev, S. I. Alekseenko and A. I. Sattarov, "Improvement of UAV navigation reliability at high angles of attack," Proc. of the 2014 IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control (MSNMC), Kiev, pp. 40-43, 2014.
  8. Myung-Jin Chung, Sung-rok Jung, Sun-Cheol Park, "A Study on the Algorithm of Flight Control Computer for Improving the Flight Safety of Smallsized Reconnaissance UAV," Communications of the Korean Institute of Information Scientists and Engineers, Vol. 34, No. 10, pp. 19-23, Oct. 2016. (in Korean)
  9. S. Bhatia, H. Yang, R. Zhang, F. Hoflinger and L. Reindl, "Development of an analytical method for IMU calibration," Proc. of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, pp. 131-135, 2016.
  10. R. Zhang, F. Hoflinger and L. M. Reind, "Calibration of an IMU Using 3-D Rotation Platform," IEEE Sensors Journal, Vol. 14, No. 6, pp. 1778-1787, Jun. 2014. https://doi.org/10.1109/JSEN.2014.2303642
  11. DAPA, "Weapon System Software Development and Management Manual," Administrative rule, 2016-4. (in Korean)
  12. K. Kwon, J. Joo, T. Kim, J. Oh, J. Baek, "A Study on Quality Assurance of Embedded Software Source Codes for Weapon Systems by Improving the Reliability Test Process," Journal of KIISE, Vol. 42, No. 7, pp. 860-867, Jul. 2015. (in Korean) https://doi.org/10.5626/JOK.2015.42.7.860
  13. DAPA, "Weapon System Software Development and Management Manual(Annex)," Administrative rule, 2016-4. (in Korean)