• Title/Summary/Keyword: Small Satellite

Search Result 760, Processing Time 0.033 seconds

Design and Test Flash-based Storage for Small Earth Observation Satellites (소형 지구 관측 위성용 플래시 기반 저장장치 설계 및 시험)

  • Baek, Inchul;Park, Hyoungsic;Hwang, Kiseon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.253-259
    • /
    • 2018
  • Recently, small satellite industries are rapidly changing. Demand for high performance small satellites is increasing with the expansion of Earth Observation Satellite market. A next-generation small satellites require a higher resolution image storage capacity than before. However, there is a problem that the HW configuration of the existing small satellite image storage device could not meet these requirements. The conventional data storing system uses SDRAM to store image data taken from satellites. When SDRAM is used in small satellite platform of a next generation, there is a problem that the cost of physical space is eight times higher and satellite price is two times higher than NAND Flash. Using the same satellite hardware configuration for next-generation satellites will increase the satellite volume to meet hardware requirements. Additional cost is required for structural design, environmental testing, and satellite launch due to increasing volume. Therefore, in order to construct a low-cost, high-efficiency system. This paper shows a next-generation solid state recorder unit (SSRU) using MRAM and NAND Flash instead of SDRAM. As a result of this research, next generation small satellite retain a storage size and weight and improves the data storage space by 15 times and the storage speed by 4.5 times compare to conventional design. Also reduced energy consumption by 96% compared to SDRAM based storage devices.

The Analysis of Mechanical Environment of Small Satellite Launcher (소형위성 발사체의 기계적 환경 분석)

  • Lee, Sung-Sae;Park, Jong-Oh;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • Science and Technology SATellite-3 (STSAT-3) is science purpose satellite which weighs below 170kg. This is classified as small satellite or micro satellite more specifically. The launch vehicles (launchers) for small satellite has their own requirements for environmental interface. Since the small satellites are usually launched with cluster or multiple payloads, the selection option for appropriate launcher is limited. Therefore, the satellite should be designed with the consideration of environmental requirements of these launchers. In this paper, the environmental requirement of most candidated launchers for small satellite is summarized and give satellite environmental requirement to accommodate all launchers requirements.

Power management analysis of LEO small satellite (저 궤도 소형위성의 전력 운용 분석)

  • Choi, Jae-Dong;Lee, Im-Pyeong;Choi, Soon-Dal
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.198-201
    • /
    • 1995
  • The overall design criteria for the optimal design of a small LEO satellite power system are described in summary. The analysis result of the KITSAT-I whole orbit data suggests the efficient power opertion for KITSAT-I and also gives some crutial information for developing a new satellite power system.

  • PDF

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

Stabilization Converter Design and Modeling of LEO Satellite Power Systems (저궤도 위성의 전력 시스템 안정화를 위한 모델링 및 제어)

  • Yun, Seok-Teak;Won, Young-Jin;Lee, Jin-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellite is very important to survival operation and hard to test, increasing reliability is very critical. Due to LEO small satellites are very sensitive to power system, effective stabilization control is important. Therefore, this paper introduce methods for general modeling of power converting system which it can be used design of controller and analysis of external disturbance influences. In conclusion, a modeling of LEO small satellites power converting system and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite are generated.

Smart Vision Sensor for Satellite Video Surveillance Sensor Network (위성 영상감시 센서망을 위한 스마트 비젼 센서)

  • Kim, Won-Ho;Im, Jae-Yoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, satellite communication based video surveillance system that consisted of ultra-small aperture terminals with small-size smart vision sensor is proposed. The events such as forest fire, smoke, intruder movement are detected automatically in field and false alarms are minimized by using intelligent and high-reliable video analysis algorithms. The smart vision sensor is necessary to achieve high-confidence, high hardware endurance, seamless communication and easy maintenance requirements. To satisfy these requirements, real-time digital signal processor, camera module and satellite transceiver are integrated as a smart vision sensor-based ultra-small aperture terminal. Also, high-performance video analysis and image coding algorithms are embedded. The video analysis functions and performances were verified and confirmed practicality through computer simulation and vision sensor prototype test.

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

ELECTRICAL GROUND SUPPORT EQUIPMENT (EGSE) DESIGN FOR SMALL SATELLITE

  • Park, Jong-Oh;Choi, Jong-Yoen;Lim, Seong-Bin;Kwon, Jae-Wook;Youn, Young-Su;Chun, Yong-Sik;Lee, Sang-Seol
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.215-224
    • /
    • 2002
  • This paper describes EGSE design for the small satellite such like KOMPSAT-2 satellite. Recent design trend of small satellite and EGSE is to take short development time and less cost. For this purpose, the design for KOMPSAT-2 satellite and EGSE are not much modified from KOMPSAT-1 heritage. It means that it is able to be accommodated the verified hardware and software modules used in KOMPSAT-1 satellite program if possible. The objective of EGSE is to provide hardware and software for efficient electrical testing of integrated KOMPSAT-2 satellite in three general categories. (1) Simulators for ground testing (e.g. solar-simulation power, earth scenes, horizons and sun sensor). (2) Ground station type satellite data acquisition and processing test sets. (3) Overall control of satellite using hardline datum. In KOMPSAT (KOrea Multi-Purpose SATellite) program, KOMPSAT-2 EGSE was developed to support satellite integration and test activities. The KOMPSAT-2 EGSE was designed in parallel with satellite design. Consequently, the KOMPSAT-2 EGSE was based on the KOMPSAT-1 heritage since the spacecraft design followed the heritage. The KOMPSAT-2 baseline was elaborated by taking advantage of experience from KOMPSAT-1 program. The EGSE of KOMPSAT-2 design concept is generic modular design with preference in part selection with commercial off-the-shelf which were proven from KOMPSAT-1 programs, flexible/user friendly operational environment (graphical interface preferred), minimized new design and self test capability.

Feasibility Study of Communication Access via Iridium Constellation for Small-Scale Magnetospheric Ionospheric Plasma Experiment Mission

  • Song, Hosub;Lee, Jaejin;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • The small-scale magnetospheric and ionospheric plasma experiment (SNIPE) is a mission initiated by the Korea Astronomy and Space Science Institute (KASI) in 2017 and comprises four 6U-sized nano-satellites (Korea Astronomy and Space Science Institute Satellite-1, KASISat-1) flying in formations. The main goal of the SNIPE mission is to investigate the space environment in low Earth orbit at 500-km. Because Iridium & GPS Board (IGB) is installed on the KASISat-1, a communication simulation is required to analyze the contact number and the duration. In this study, communication simulations between the Iridium satellite network and KASISat-1 are performed using STK Pro (System Tool Kit Pro Ver 11.2) from the AGI (Analytical Graphics, Inc.). The contact number and durations were analyzed by each orbit and date. The analysis shows that the average access number per day is 38.714 times, with an average of 2.533 times per orbit for a week. Furthermore, on average, the Iridium satellite communication is linked for 70.597 min daily. Moreover, 4.625 min is the average duration of an individual orbit.

The design and development of Control/Storage and TRX Module for Small Satellite Synthetic Aperture Radar Application (초소형위성 영상레이다를 위한 제어/저장 및 송수신 모듈의 설계 및 제작)

  • Lee, Juyoung;Kim, Hyunchul;Kim, Jongpil;Yu, Kyungdeok;Kim, Dongsik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.31-36
    • /
    • 2022
  • In this paper, we present the design, manufacture and test results of Backend unit for SAR(Synthetic Aperture Radar) that can be applied on a small satellite. The Backend unit for SAR was designed with a control/storage board, TRX(transmission and receiving) board and a power supply board as a single unit in consideration of the applying of a small satellite. The control/storage board uses RFSoC to generate wideband chirp signal, generate operating timings, and perform control and calculations for SAR operation. The TRX board is designed to convert the wideband chirp signal generated by the control/storage board to the operating frequency of X-band by up-converting the frequency. Since small size, light weight, and low cost are important consideration for small satellite, MIL/Industrial grade components were appropriately applied and the at the same time it was designed to ensure mission life through the radiation test, analysis and space environment tests.