Browse > Article
http://dx.doi.org/10.5140/JASS.2022.39.3.109

Feasibility Study of Communication Access via Iridium Constellation for Small-Scale Magnetospheric Ionospheric Plasma Experiment Mission  

Song, Hosub (Korea Astronomy and Space Science Institute)
Lee, Jaejin (Korea Astronomy and Space Science Institute)
Yi, Yu (Department of Astronomy, Space Science and Geology, Chungnam National University)
Publication Information
Journal of Astronomy and Space Sciences / v.39, no.3, 2022 , pp. 109-116 More about this Journal
Abstract
The small-scale magnetospheric and ionospheric plasma experiment (SNIPE) is a mission initiated by the Korea Astronomy and Space Science Institute (KASI) in 2017 and comprises four 6U-sized nano-satellites (Korea Astronomy and Space Science Institute Satellite-1, KASISat-1) flying in formations. The main goal of the SNIPE mission is to investigate the space environment in low Earth orbit at 500-km. Because Iridium & GPS Board (IGB) is installed on the KASISat-1, a communication simulation is required to analyze the contact number and the duration. In this study, communication simulations between the Iridium satellite network and KASISat-1 are performed using STK Pro (System Tool Kit Pro Ver 11.2) from the AGI (Analytical Graphics, Inc.). The contact number and durations were analyzed by each orbit and date. The analysis shows that the average access number per day is 38.714 times, with an average of 2.533 times per orbit for a week. Furthermore, on average, the Iridium satellite communication is linked for 70.597 min daily. Moreover, 4.625 min is the average duration of an individual orbit.
Keywords
small-scale magnetospheric and ionospheric plasma experiment (SNIPE); Korea Astronomy and Space Science Institute Satellite-1 (KASISat-1); nano-satellite; CubeSat; Iridium satellite; satellite communication;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Claybrook JR, Feasibility analysis on the utilization of the Iridium Satellite Communications Network for resident space objects in Low Earth Orbit, Master Thesis, Air Force Institute of Technology (2013).
2 Corpino S, Tomasicchio G, Di Donna AM, Satellite communication channel model for rotary-wing vehicles in a mission analysis context (2022) [Internet], viewed 2022 Jul 20, available from: https://webthesis.biblio.polito.it/22340/1/tesi.pdf
3 Kang S, Song Y, Park SY, Nanosat formation flying design for SNIPE mission, J. Astron. Space Sci. 37, 51-60 (2020). https://doi.org/10.5140/JASS.2020.37.1.51   DOI
4 Kim JS, Kim HD, Development of drag augmentation device for post mission disposal of nanosatellite, J. Space Technol. Appl. 2, 1-12 (2022). https://doi.org/10.52912/jsta.2022.2.1.1   DOI
5 Pratt SR, Raines RA, Fossa CE, Temple MA, An operational and performance overview of the IRIDIUM low earth orbit satellite system, IEEE Commun. Surv. 2, 2-10 (1999). http://doi.org/10.1109/COMST.1999.5340513   DOI
6 Lee J, Sohn J, Park J, Yang TY, Song HS, et al., SNIPE mission for space weather research, J. Space Technol. Appl. 2, 104-120 (2022). https://doi.org/10.52912/jsta.2022.2.2.104   DOI
7 Fossa CE, Raines RA, Gunsch GH, Temple MA, An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system, Proceedings of the IEEE 1998 National Aerospace and Electronics Conference, Dayton, OH, 17 Jul 1998.
8 Khan K, Data communication with a nano-satellite using satellite personal communication networks (s-pcns), Master Thesis, University of Central Florida (2008).
9 Kim HD, Choi WS, Kim MK, Kim JH, Kim KD, et al., Design and development of the SNIPE bus system, J. Space Technol. Appl. 2, 81-103 (2022). https://doi.org/10.52912/jsta.2022.2.2.81   DOI
10 Allmen J, Petro A, Small spacecraft technology, Proceedings of the AIAA/USU Conference on Small Satellites, Logan, UT, 4-7 Aug 2014.
11 Riot VJ, Simms LM, Carter D, Lessons learned using iridium to communicate with a CubeSat in low earth orbit, J. Small Satell. 10, 995-1006 (2021).
12 Brunt P, IRIDIUM®: overview and status, Space Commun. 14, 61-68 (1996).
13 Cho DH, Kim H, Kim HD, Visibility analysis of iridium communication for SNIPE nano-satellite, J. Korean Soc. Aeronaut. Space Sci. 50, 127-135 (2022). https://doi.org/10.5139/JKSAS.2022.50.2.127   DOI
14 Maine K, Devieux C, Swan P, Overview of IRIDIUM satellite network, Proceedings of the WESCON'95, San Francisco, CA, 7-9 Nov 1995.
15 Rodriguez C, Boiardt H, Bolooki S, CubeSat to commercial intersatellite communications: past, present and future, Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, 5-12 Mar 2016.
16 Song Y, Park SY, Lee S, Kim P, Lee E, et al., Spacecraft formation flying system design and controls for four nanosats mission, Acta Astronaut. 186, 148-163 (2021b). https://doi.org/10.1016/j.actaastro.2021.05.013   DOI
17 Dahal UD, Cost-effective microcontroller-based iridium satellite communication architecture for a remote renewable energy source, Master Thesis, Bharathiar University (2002).
18 Song H, Park J, Buchert S, Jin Y, Chao CK, et al., A small peak in the swarm-Lp plasma density data at the dayside dip equator, J. Geophys. Res. Space Phys. 127, e2022JA030319 (2022). https://doi.org/10.1029/2022JA030319   DOI
19 Sohn J, Lee J, Jo G, Lee J, Hwang J, et al., Conceptual design of a solid state telescope for small scale magNetospheric ionospheric plasma experiments, J. Astron. Space Sci. 35, 195-200 (2018). https://doi.org/10.5140/JASS.2018.35.3.195   DOI
20 Song H, Park J, Lee J, Magnetometer calibration based on the CHAOS-7 model, J. Astron. Space Sci. 38, 157-164 (2021a). https://doi.org/10.5140/JASS.2021.38.3.157   DOI