• Title/Summary/Keyword: Small Emission Chamber

Search Result 81, Processing Time 0.023 seconds

Nitride/Oxide Etch Spectrum Data Verification by Using Optical Emission Spectroscopy (OES를 이용한 질화막/산화막의 식각 스펙트럼 데이터 분석)

  • Park, Soo-Kyoung;Kang, Dong-Hyun;Han, Seung-Soo;Hong, Sang-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.353-360
    • /
    • 2012
  • As semiconductor device technology continuously shrinks, low-open area etch process prevails in front-end etch process, such as contact etch as well as one cylindrical storage (OCS) etch. To eliminate over loaded wafer processing test, it is commonly performed to emply diced small coupons at stage of initiative process development. In nominal etch condition, etch responses of whole wafer test and coupon test may be regarded to provide similar results; however, optical emission spectroscopy (OES) which is frequently utilize to monitor etch chemistry inside the chamber cannot be regarded as the same, especially etch mask is not the same material with wafer chuck. In this experiment, we compared OES data acquired from two cases of etch experiments; one with coupon etch tests mounted on photoresist coated wafer and the other with coupons only on the chuck. We observed different behaviors of OES data from the two sets of experiment, and the analytical results showed that careful investigation should be taken place in OES study, especially in coupon size etch.

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과-)

  • Kwon, J.B.;Kim, H.S.;Kwon, I.K.;Oh, K.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Combustion and Emission Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 및 배기 특성)

  • Heo, Seong-Geun;Kim, Dac-Sik;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • A homogeneous premixed charge compression ignition engine is experimentally investigated for the reduction of exhaust emissions in diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC and CO emissions were increased with the increase of premixed ratio. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

  • PDF

Insights Of Air Pollutant Emission From Construction Sealant (건축용 실란트 오염물질 방출량 기준에 대한 고찰)

  • Seo, Yeonwon;Jung, Jinyoung;Bae, Keesun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.226-227
    • /
    • 2014
  • This study is intended for the review of the standards related with the released contaminants from building materials used in the building room. Because currently being used industry standard and test method for the emissions of air pollutant are ambiguous so the new enactment and revision of the test methods and standards need to be addressed to match the actual situation in the construction industry. Based on actual evaluation for seveal sealants used in the job site, this study will present a direction for the revision and new enactment of standards and test method appropriately.

  • PDF

A Study on the Measurement of Individual Spray Cone Angle from Gasoline Direct Injection Injector using Spray Pattern Analysis (분무패턴 분석을 이용한 가솔린 직접 분사식 인젝터의 개별 분무플럼 분무각 측정 방법에 대한 연구)

  • Park, Jeonghyun;Cho, Hanbin;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • The purpose of this study is to propose and compare methods for measuring individual spray cone angles using spray cross-section images. In direct injection gasoline engines, it was believed that the distribution of air-fuel mixture in the combustion chamber directly affected combustion performance and emission formation. However, since gasoline direct injection (GDI) injectors have a small injection angle, interference between individual spray plumes occurs. Therefore, GDI injectors have only measured the spray angle of the entire spray. To overcome these limitations, three methods of indirectly measuring the spray cone angles of individual spray plume were presented and compared by forming sheet beams using Nd:YAG laser and acquiring spray cross-section images. Each method currently has advantages and disadvantages, and research to apply the method suitable for various GDI injectors needs to be continued.

Understanding Ion Pump Emissions : Classification, Source Identification and Elimination of Emissions from Ion Pumps

  • Wynohrad, Tony
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.340-344
    • /
    • 2014
  • Ion pumps continue to be a staple in ultra-high vacuum (UHV) applications. Since their adoption as a primary UHV pump in the 1960's, it has been known that a variety of particles can emanate from within the ion pump and cause undesirable effects on current measurements and optics components. Historically the solution has been baffling and shielding which results in longer conductance paths to the ion pump. Those solutions can work, but require a larger pump and more vacuum plumbing to compensate for conductance losses. The first step was to fully understand the nature of the particles and their charges. Once those were characterized options for emissions reduction were evaluated. It was determined that an efficient design of shielding near the source of the particle generation site was the most cost effective solution. With a slight modification to the chamber of a small ion pump, internal shielding was developed that reduced the emissions by a factor of up to 1000 times.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System (EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;허성근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;장시웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.9-14
    • /
    • 2002
  • A homogeneous premixed charge compression ignition engine has been experimentally studied far the reduction exhaust emissions of diesel engines. In this study, the gasoline fuel is injected into the intake manifold to from homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.