• Title/Summary/Keyword: Slurries

Search Result 250, Processing Time 0.019 seconds

CMP of BTO Thin Films using Mixed Abrasive slurry (연마제 첨가를 통한 BTO Film의 CMP)

  • Kim, Byeong-In;Lee, Gi-Sang;Park, Jeong-Gi;Jeong, Chang-Su;Gang, Yong-Cheol;Cha, In-Su;Jeong, Pan-Geom;Sin, Seong-Heon;Go, Pil-Ju;Lee, U-Seon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.101-102
    • /
    • 2006
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant, It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the sell-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS). respectively. The removal rate of BTO thin film using the $BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%.

  • PDF

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry (CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조)

  • Kang, Hyunji;Riu, Doh-Hyung;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells (염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향)

  • Han, Young-Moon;Hwang, Sook-Hyun;Kang, Myung-Hoon;Kim, Young-Joo;Kim, Hyun-Kook;Kim, Sang-Hyo;Bae, Hyo-Jun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

Experimental Investigation of the Development of a Rotor Type Slurry Pump (로터형 슬러리 펌프 개발을 위한 실험적 연구)

  • Park, Sang-Kyoo;Yun, Jae-Geun;Yangr, Hei-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.456-462
    • /
    • 2015
  • The objective of this study was to develop an advanced pump technology using tornado and axial pumping principles without priming water. The developed rotor type slurry pump consisted of an electric motor, driving shaft and coupling, a rotor, an impeller, suction and discharge pipes. For the clean water test, the experimental results are presented for the discharge flowrate, electric power input and vacuum pressure with the rotor design parameters as a function of the motor rpm. The slurry discharge characteristics with the solid concentration of the cement slurry was performed. As the rotor diameter and height increase, the discharge flowrate and electric power input increase while the vacuum pressure in the suction pipe decreases. The rotor thickness had no significant effect on the discharge flowrate and electric power input. Slurries with more than 18 % solid concentration, which is the development factor, can be pumped.

Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry (염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조)

  • Bang, Su-Ryong;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

Slurry Characteristics by Surfactant Condition at Copper CMP (구리 CMP 공정시 계면활성제 첨가 조건에 의한 슬러리 특성)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.166-169
    • /
    • 2003
  • In this study, we evaluated the characteristics by the addition of 3 different kinds of nonionic surfactant to improve the dispersion stability of slurries. Slurry stability is an issue in any industry in which settling of particles can result in poor performance. So we observed the variation of particle size and settling rate when the concentration and addition time of surfactant are changed. When the surfactant is added after milling process, the particle size and pH became low. It is supposed that the particle agglomeration was disturbed by adsorption of surfactant on alumina abrasive. The settling rate was relatively stable when nonionic surfactant is added about 0.1~1.0 wt%. When molecular weight(MW) is too small like Brij 35, it was appeared low effect on dispersion stability. Because it can't prevent coagulation and subsequent settling with too small MW. The proper quality of MW for slurry stability was presented about 500,000. Consequently, the addition of nonionic surfactant to alumina slurry has been shown to have very good effect on slurry stabilization. If we apply this results to copper CMP process, it is thought that we will be able to obtain better yield.

  • PDF

Polishing Characteristics of passivation layer by abrasive particles and slurry chemical in the Metal CMP process (금속 CMP 공정에서 연마제와 슬러리 케미컬에 의한 passivation layer의 연마특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.45-48
    • /
    • 2003
  • The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on tungsten passivation layer in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we investigated the effects of oxidizer on W-CMP process with three different kinds of oxidizers, such as $H_2O_2$, $Fe(NO_3)_3$, and $KIO_3$. In order to compare the removal rate and non-uniformity of three oxidizers, we used alumina-based slurry of pH 4. According to the CMP tests, three oxidizers showed different removal mechanism on tungsten surface. Also, the microstructures of surface layer by AFM image were greatly influenced by the slurry chemical, composition of oxidizers. The difference in removal rate and roughness of tungsten surface are believed to caused by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry. Our stabilized slurries can be used a guideline and promising method for improved W-CMP process.

  • PDF

Growth of Nanocrystalline Diamond Films on Poly Silicon (폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장)

  • Kim, Sun Tae;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Porosity Control in LSM Electrode Formation in Layered Plannar SOFC Module (적층 평판형 SOFC에서 LSM 전극의 기공 제어)

  • Lee, Won-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dea-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.866-870
    • /
    • 2014
  • In solid oxide fuel cell system, yttria-stabilized zirconia is generally adopted as the electrolyte, which has high strength and superior oxygen ion conductivity, and the air electrode and the fuel electrode are attached to this. Recently, new structure of 'layered planar SOFC module' was suggested to solve the reliability problem due to the high temperature stability of a sealing agent and a binding material. In this study to materialize the air electrode in a layered planar SOFC module, the LSM ink was coated to form homogeneous electrode in the channel after the ink preparation. As the porosity control agent, PMMA or active carbon powder was adopted with use of a commercial dispersant in ethanol. The optimal amounts of both the porosity control agents and the dispersant were determined. Four (4) vol% of the dispersant for the LSM-PMMA case and 15 vol% for LSM-carbon powder showed the lowest viscosities respectively to indicate the best dispersed states of the slurries. With PMMA and carbon powder, sintered LSM ink shows the relatively homogeneous distributions of pores and with increases of the agents, the porosities increased in both cases. From this, it can be thought that the amount of the PMMA or carbon powder could be used to control the porosity of the LSM ink.