• Title/Summary/Keyword: Sludge oil

Search Result 110, Processing Time 0.032 seconds

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

Catalytic Wet Gasification of Biomass Mixed Fuels (바이오메스 혼합연료의 습윤 촉매 가스화 연구)

  • Kang, Sung-Kyu;Lee, Seung-Jae;Ryu, In-Soo;Hur, Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.59-72
    • /
    • 2009
  • In order to utilize sewage sludge as a heat source of energy, it goes without saying that the fuel should be clean and pose no threat to the environment. As a consequent, it should not contain even minute quantities of heavy metals / impurities. The SOCA (Sludge-Oil-Coal- Agglomerates) fuel can meet all these requirements. SOCA being a solid fuel can be gasified for the production of clean energy. Wet catalytic gasification is the most appropriate process for SOCA containing nearly 60% water. It is important to note that the SOCA thus obtained inherits ca. 40~50% of sulfur from the coal used. It can poison the catalyst during catalytic gasification process. Consequently, it becomes important to choose a proper catalyst for the gasification. Calcium was found to be ideal choice as a catalyst for the gasification of SOCA. The optimal gasification was performed at $850^{\circ}C$ with water vapor. The role of fuel-N is of utmost importance in the gasification of SOCA. The gasification should be controlled to reduce the production of HCN to a minimum and enhance its conversion to $N_2$ and/or $NH_3$.

  • PDF

A Study on the Improvement of Marine Pollution and Marine Litter Managements in Korea (우리나라 해양오염 및 해양폐기물관리 개선에 관한 연구)

  • Park, Kwang-Ha;Kwon, Young-Du;Kim, Jong-Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.33-43
    • /
    • 2013
  • That occur in the ocean and the efficient management of marine litter on marine pollution oil spill response one step further strategies are needed. Marine pollution accidents occurred in 2011, a total of 287 and was found in runoff 369 kL, respectively compared to the previous year decreased by 13% and 39%. Average amount of marine materials during 5-years represent the oil flow of 310.5 kL (heavy fuel oil of 106.0 kL, diesel of 178.9 kL, oily bilge water of 22.3 kL, other oil of 7.7 kL) and the waste of 62.3 tons, the hazardous and noxious substances (HNS) was 510.6 kL. Marine emissions in 2011 by type of waste that a total amount of dumping 3,972 $m^3$, and livestock manure 795 $m^3$(20%), waste water 1,431 $m^3$(36%), sewage sludge 887 $m^3$(22%), wastewater sludge, 813 $m^3$(21%), manure 5 $m^3$(0.1%), other 41 $m^3$(0.9%), respectively. The concept of marine waste and needs to be more clearly defined. Integrated management of hazardous chemicals according to the incident management system should be established. To remove of coastal pollution, response officer needs korean coast response system. Like the marine pollution response, coastal pollution response systems also require step response.

Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47 (Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해)

  • Kim, Lan-Hee;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Cutting oils are emulsionable fluids widely used in metal working processes. Their composition is mineral oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Cutting oils also affect colour, taste and odour of water, making it undesirable for domestic and industrial uses. In these days, conventional treatment methods as evaporation, membrane separation or chemical separation have major disadvantages since they generate a concentrated stream that is more harmful than the original waste. In this study, our purpose is to reduce cutting oils by using biological treatment. Eighty one strains were isolated from cutting waste oil of industrial waste water sludge under aerobic conditions. Among these strains, KS47, which removed 90.4% cutting oil in 48 hr, was obtained by screening test under aerobic conditions(pH 7, $28^{\circ}C$). KS47 was identified as Pseudomonas aeruginosa according to morphological, physiological and biochemical properties, 16S rDNA sequence, and fatty acid analysis. P. aeruginosa KS47 could utilize cutting oil as carbon source. In batch test, we obtained optimal degradation conditions(1.5 g/L cell concentration, pH 7, and temperature $30^{\circ}C$). Under the optimal conditions, 1,060 mg/L cutting oil was removed 83.7% (74.1 mg/L/hr).

Effects of Oxygen and Steam Feeding Ratios on the Gasification of Mixed Waste Oil/sludge (폐유/슬러지 혼합 시료 가스화반응에서 산소 및 증기 공급비 변화의 영향)

  • 김수현;이승종;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.251-254
    • /
    • 2002
  • 폐기물을 대상으로 하는 가스화공정은 환경문제와 에너지효율 문제를 동시에 접근할 수 있는 공정으로서 향후 연소반응에 근거한 공정을 점차 대체할 것으로 예측되고 있다. 국내에서도 '80년대 이후 선진국에 비해서는 소규모이지만 나름대로의 가스화기술에 대한 기반 연구를 진행시켜 왔고, 폐기물 분야에는 상용급으로 실용화할 수 있는 규모의 실플랜트 운용기술이 개발되고 있다.(중략)

  • PDF

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Effect of Ultrasonic Irradiation on On-board Fuel Analyzed Using Gas Chromatography/Mass Spectrometry (GC/MS를 이용한 선박연료유에 대한 초음파조사 효과 분석)

  • Choi, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.890-897
    • /
    • 2021
  • Since the enforcement of strict regulations on marine fuel oil sulfur content, demand for Low Sulfur Fuel Oil (LSFO) has been increasing. However, as LSFO properties vary greatly depending on the supply timing, region, and supplier, LSFOs can experience problems with sludge formation, blending compatibility, and stability once mixed into storage tanks. This study investigates using ultrasound cavitation effects to improve the quality of LSFOs in storage tanks. For marine gas oil (MGO), the results showed that the relative ratio of high molecular weight compounds to those of low molecular weight decreased after ultrasonic irradiation, due to cavitation-induced cracking of chemical bonds. For marine diesel oil (MDO) and blended oil, a small increase in the relative abundance of low weight molecular compounds was observed after treatment. However, no correlation between time and relative abundance was observed.

Evaluation of analytical methods for several metals and fluoride by certified reference materials (인증표준물질을 이용한 중금속류와 플루오르화물 전처리방법 비교 연구)

  • Jeon, Tae Wan;Chung, David;Shin, Sun Kyoung;Choi, Hun Geun;Chung, Young Hee
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.172-180
    • /
    • 2006
  • This study was performed to establish new methods for hazardous substances and to develop an analytical method in specified wastes for preventing the environmental pollution caused by hazardous wastes. Therefore, the trends of international management, regulatory criteria, and items of hazardous wastes in various countries were investigated. Based on this study, target priority of new hazardous substances in specified wastes was established. An analytical method was developed using the waste standard reference materials of sludge, oil, bottom ash, etc., which contain the new hazardous substances (Ba, Be, Cr(VI), F, Ni, Sb, Se, and V). A total of 37 waste samples from the representative facilities, which are emitting new hazardous substances, were analyzed.

Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性))

  • Kim, Hwan Gi;Park, Ro Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1990
  • In this paper, the experimental study was carried out for the removal of olive oil in wastewater by the use of Biological Fluidized Bed(BFB) with the reticulated polypropylene sheets as media. The nonbiodegradable olive oil, one of the animal and vegitable oil, was used bacause of the relative simplicity of constitution. Biological degraciability and removal characteristics of emulsified olive oil were studied by batch and continuous experiments respectively. From the results of batch experiments, it was observed that the emulsified olive oli used in BFB reactor was absorbed by media and sludge in about 12 hours, and degradation of the absorbed olive oli was mostly completed for 24 hours. The functional relationship of Michaelis-Menten's Enzyme reaction equation exists between oil concentration and maximum specific rate of olive oil. From the continuous experiments for the removal of olive oil using BFB reactor, it was proved that the substrate removal rate coefficient $k=0.004d^{-1}$, which is the first order kinetics. It was apperared that oxygen utlization coefficients for synthesis(a') and endogeneous respiration(b') of microorganisms in the reactor are respectively 0.85mg $O_2/mg$ $COD_{cr}$ and 0.011mg $O_2/mg$ BVS. day.

  • PDF

The Fabrication of Artificial Fine Aggregates Using Stone Sludge and Spent Bleaching Clay

  • Kim, Kangduk
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.492-497
    • /
    • 2014
  • Artificial fine aggregates (denoted AFA) were fabricated using spent bleaching clay (denoted SBC) generated from processed vegetable oil and stone sludge (denoted SS) produced from crushed aggregate manufacturing materials for use as functional construction materials. Each raw material was crushed to particle size finer than $150{\mu}m$, and fine spherical pellets of approximately 1 ~ 4 mm in diameter were prepared by a pelletizing process. The physical properties of the AFA were measured with different types of sintering equipment. A new type of vertical furnace that sinters fine aggregates in a fluidized bed at high temperatures was designed and tested. AFA sintered in a rotary kiln at $1125^{\circ}C$ showed a bulk density of $1.5g/cm^3$ and a water absorption of 16%. AFA sintered in the vertical furnace at $1125^{\circ}C$ showed a bulk density of $1.9g/cm^3$ and water absorption of 8.5%. The bulk density of the AFA sintered in the vertical furnace showed a bulk density 27% higher and water absorption 47% lower than those of AFA sintered in the rotary kiln.