• Title/Summary/Keyword: Sludge oil

Search Result 110, Processing Time 0.031 seconds

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Study for Examples of Fire Including Friction with Automotive Clutch, Manual Transmission and Tire System (자동차 클러치, 수동변속기, 타이어 시스템의 마찰에 관련된 화재사례 연구)

  • Lee, Il Kwon;Moon, Hak Hoon;Kim, Jin Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.49-53
    • /
    • 2015
  • The purpose of this paper is to study and analyze the failure examples for fire by friction on clutch, manual transmission and tire system in a car. In the first example, the driver took the pedal with foot to act the clutch. But the clutch disk did not return from flywheel by leakage of clutch hydraulic line. The heat was produced between clutch disk and flywheel by surface contacting. As a result, it was produced the fire by oil sludge sticked with transmission. In the second example, the transmission system was operated to transfer power of engine by contacting with gear and gear. But, as if the oil of transmission was caused the oil insufficiency because of leaking by crack of transmission case, it found the fact that was produced the fire by deposit material on transmission case. In the third example, when the car's driver continuously pushed an accelerator pedal for escaping from dry pit, the tire took the heat by the friction force between tire and surface of road. As a result, it became the direct cause for the fire. Therefore the driver must manage not to produce the fire with friction parts by heating during running.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Products and pollutants of half dried sewage sludge and waste plastic co-pyrolysis in a pilot-scale continuous reactor (반 건조 하수슬러지와 폐플라스틱 혼합물의 파일롯 규모 연속식 열분해에 의한 생산물과 발생 오염물질)

  • Kim, YongHwa;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • A continuous low temperature ($510^{\circ}C{\sim}530^{\circ}C$) pyrolysis experiment in a pilot-scale of 85.3 kg/hr was carried out by the mixed feedstock of half dried digested sewage sludge and waste plastics. As a result, the amount of pyrolysis gas generated was maximum 68.3% of input dry mass and scored $40.9MJ/Nm^3$ of lower heating value (LHV), and the percentage of air inflow caused by continuous pyrolysis was 19.6%. The oil was produced 4.2% of the input dry mass, and the LHV was 32.5 MJ/kg. The sulfur and chlorine contents, which could cause corrosion of the facility, were found to be 0.2% or more respectively. The carbide generated was 27.5% of the input dry mass which shows LHV of 10.2 MJ/kg, and did not fall under designated waste from the elution test. The concentration of carbon monoxide, sulfur oxides and hydrogen cyanide of emitted flu gas from pyrolysis gas combustion was especially high, and dioxin (PCDDs/DFs) was within the legal standards as $0.034ng-TEQ/Sm^3$. Among the 47 water pollutant contents of waste water generated from dry flue gas condensation, several contents such as total nitrogen, n-H extract and cyanide showed high concentration. Therefore, the merge treatment in the sewage treatment plants after pre-treatment could be considered.

Degradation of Fats, Oils and Hydrocarbons by Acinetobacter calcoaceticus (Acinetobacter calcoaceticus에 의한 유지와 탄화수소의 분해)

  • 고정삼;고영환;김권수;양상호;강경수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.477-482
    • /
    • 1992
  • A bacterial strain Acinetobacter calcoaceticus was examined for its ability to degrade fats, oils and hydrocarbons, and tested for the possibility of application in wastewater treatment. All fats and oils tested were degraded by the strain. About 60% of hexadecane, 26% of fish oiL and 40-54% of vegetable oils were consumed respectively in shaking-flask culture. Saturated fatty acid compositions were about 55% in fish oil and 6-12% in vegetable oils. Increases in cell mass were accompanied with decreases in the concentrations of carbon sources. When jar fermentor in place of shaking-flask was used as a culturing vessel. above 80% of all carbon sources was consumed and yield of cell mass was improved to nearly 1.00. Synthetic wastewaters containing 3% of fat, oil, or hydrocarbon as a sale ca,bon source were treated sequentially with A. calcoaceticus first and then exposed to activated sludge. The concentrations of carbon sources were decreased below 0.06% through the process, and the concentrations of suspended solids were lower than 53 mglml. The data imply the potential use of A. calcoaceticus in wastewater treatment.

  • PDF

Isolation of Lipase Producing Yeast and Optimization of Cultivation Condition (Lipase 생산 효모균주의 분리 및 배양조건 최적화)

  • 박명훈;류현진;오경근
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Lipase catalyzes the hydrolysis of glycerides into fatty acids and glycerol. The study of microbial lipases has been stimulated in resent years. It is due to the potential uses of lipases in esterification of oils to glycerol, alcohols and carbohydrates. Development of lipase producing yeast has been focused concerning to the utilization of yeast culture for animal feed. In this study, yeast like cells was isolated from a waste oil and sludge. A strain having higher lipase activity was selected by random mutagenesis using UV-radiation. The optimal cultivation conditions in submerged culture were examined in terms of lipase production. 2.0% of high fructose syrup, 1,0% of CSL, and 1.0% of olive oil were selected as the nutritional media for the production of lipase. The maximum lipase activity of 1.12 U/ml and viable cell number of 8.8${\times}$10$\^$7/ cells/mL were obtained at 27$^{\circ}C$ with an initial pH of 5.0.

Characterization of an alkaline esterase from an enriched metagenomic library derived from an oil-spill area

  • Baek, Seung Cheol;Jo, Jeong Min;Jeong, Soo-Mi;Lee, Jae Pil;Lee, Hyun Woo;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.73-79
    • /
    • 2019
  • A novel esterase gene (est7S) was cloned from an enriched metagenomic library derived from an oil-spill area. The gene encoded a protein of 505 amino acids, and the molecular mass of the Est7S was estimated to be 54,512 Da with no signal peptide. Est7S showed the highest identity of 40% to an esterase from a sludge metagenome compared to the characterized enzymes with their properties, although it showed 99% identity to a carboxylesterase in the genome sequence of Alcanivorax borkumensis SK2. Est7S had catalytic triad residues, Ser183, Glu312, and His420, and the GESAG motif in most family VII lipolytic enzymes. Est7S was purified from the crude extract of clone SM7 using Sephacryl S-200 HR and HiTrap Q column chromatographies. The purified Est7S was optimally active at $50^{\circ}C$ and pH 10.0. Est7S showed a high specific activity of 366.7 U/mg protein. It preferred short length esters, particularly p-nitrophenyl acetate, efficiently hydrolyzed R- and S-enantiomers of methyl-3-hydroxy-2-methylpropionate, and glyceryl tributyrate. These properties of Est7S may provide potential merits in biotechnological applications such as detergent and paper processing under alkaline conditions.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Treatment of Industrial Wastewater with High Concentration of Hydrocarbons Using Membrane Reactors

  • Bienati, B.;Bottino, A.;Comite, A.;Ferrari, F.;Firpo, R.;Capannelli, G.
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • The application of membrane bioreactors for the depuration of wastewater coming from the washing of mineral oil storage tanks is described. Microfiltration hollow-fibre membranes were used in the submerged configuration. Filtration tests were carried out with a biomass concentration of about 15 g/L in order to assess the critical flux of the hollow fibre membrane used. Then particular care was taken in carrying out the performance runs in the sub-critical flux region. The reactor performance was very high, with removal efficiencies ranging between 93% and 97% also when the concentration of hydrocarbon was very high. Some kinetic parameters for the COD and the hydrocarbon removal were estimated.

Recovery Process for the Recycling of Waste Carbon Black

  • Lee, Sungoh;Nampyo Kook;Tam Tran;Bangsup Shin;Kim, Myongjun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A lot of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurity content such as sulphur, iron, ash and etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3-5 times more expensive than oil-based carbon black because of its process difficulties and requires pollutant treatment. Hydrophilic carbon is normally used far conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc.. In these applications, hydrophilic carbon must maintain its high purity. In this study magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. As results, the ash, iron and sulphur content of product decreased to less than 0.01wt.%, 0.0lwt.% and 0.3wt.% respectively, and the surface area of product was about 930 $m^2$/g.

  • PDF