• Title/Summary/Keyword: Sludge activity

검색결과 171건 처리시간 0.034초

Environmental toxicity and biodegradation of Pseudomonas sp. EL-G527 producing biosurfactant

  • Mi Seon, Cha;Hong Ju, Son;Sang Jun, Lee
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2002년도 봄 학술발표대회 발표논문집
    • /
    • pp.452-454
    • /
    • 2002
  • A biosurfactant-producing microorganism, .Pseudomouos sp. EL-G527 was isolated from activated sludge by enrichment culture when grown on mineral salt medium containing n-hexadecane as a carbon source. The biosurfactant from .Pseudomonar sp. EL-G527 exhibited lesser toxicity to bacterial population than synthetic surfactants and in the biodegradation test, biosurfactant was rapidly degraded and lost its activity as surface active material after 1 day incubation. In this study, the biosurfactant from Pseudomonas sp. EL-G527 was effective surface-active compound, more biodegradable and less toxic to microbial ecosystem than various synthetic surfactants.

  • PDF

제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상 (Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature)

  • 풍경;송영채;장성호
    • 대한환경공학회지
    • /
    • 제38권11호
    • /
    • pp.618-626
    • /
    • 2016
  • 상온조건($25^{\circ}C$)에서 하수슬러지처리를 위한 생물전기화학 혐기성소화조의 성능에 미치는 제2철 이온($Fe^{+3}$)의 영향을 연구하였다. 생물전기화학 혐기성소화조를 상온에서 운전하였을 때 pH, 알카리도, COD 및 VFAs 등의 상태변수들은 안정하였으며, VS 제거율과 비메탄발생율은 각각 65.9% 및 370 mL/L/d이었다. 생물전기화학 혐기성소화조에 제2철 이온(200 ppm)을 주입한 후 상태변수들의 안정도는 더욱 향상되었으며, VS 제거율 및 비메탄발생량은 각각 69.8%, 396 mL/L/d로 증가하였다. 그러나, 제2철 이온을 주입 이후에 바이오가스의 메탄함량은 76.6%로 주입 이전의 77.3%에서 비하여 약간 감소하였다. 부유슬러지의 미생물 군집을 변화를 분석한 결과 공생 혐기성미생물(Cloacamonas) 및 가수분해균(Saprospiraceae, Ottowia pentelensis) 등의 우점균의 비율이 제2철 이온의 주입으로 증가하였다. 이것은 철이온의 주입으로 부유혐기성미생물(planktonic anaerobic bacteria, PAB)의 활성이 증가하였음을 나타낸다. 제2철 이온은 상온조건에서 하수슬러지처리를 위한생물전기화학 혐기성소화조의 성능을 향상시킨다.

지렁이 분변토와 주정슬러지 혼합 배양액을 이용한 Biofilter에서의 고농도 악취제거 (Removal of High Odor Concentration with Biofilter using Mixture of Earthworm Cast and Distillery Sludge)

  • 박종웅;장석조
    • 한국환경보건학회지
    • /
    • 제40권2호
    • /
    • pp.127-136
    • /
    • 2014
  • Objectives: This study was conducted to investigate the removal of high odor concentration from swine wastewater treatment facility by full scale biofilter using liquid with deodorant mixed with earthworm cast and distillery sludge. Methods: The supply of the culture liquid to the microorganism on the media in the biofilter increases the activity and growth of biomass. The experimental equipment was biofilter tower with treatment capacity of 90 m 3/min. The experimental conditions included gas flow of $60m^3/min$, retention time of 20 sec, and gas/liquid ratio of 67. Results: With changing season from winter to summer, the inlet odor concentration of ammonia increased from 2.5 ppm to 29 ppm, and of hydrogen sulfide from 21 ppm to 91 ppm, respectively. The odor treatment system with biofilter using the culture liquid was stable when the high loading rate increased and showed excellent removal grade with an average of 96.7% for ammonia, and an average of 93.7% for hydrogen sulfide. The pH and SCOD in the recirculating culture liquid near the bottom of the biofilter tower decreased with operation time, but its influence on the odor removal rate was negligible, because the organic matter (SCOD) was replaced by some culture liquid supplied 2-4 times per day. Conclusions: The biofilter using culture liquid could successfully remove high odor concentration which was generated from swine wastewater treatment facility.

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue;Rhee Sung-Keun;Bae Jin-Woo;Baek Jong-Hwan;Park Yong-Ha;Lee Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.232-239
    • /
    • 2006
  • The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

유류오염대수층 고온공기분사공정시 제한효소다형성 미생물 군집 (Microbial Community in the TPH-Contaminated Aquifer for Hot Air Sparging using Terminal-Restriction Fragment Length Polymorphism)

  • 이준호;박갑성
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.19-29
    • /
    • 2008
  • Hot air sparging is a groundwater remediation technique, in which organic contaminants volatilized into hot air from the saturated to vadose zone. In the laboratory diesel (10,000 mg TPH/kg) was spiked in contaminated saturated aquifer soil. The hot air ($34.9{\pm}2.7^{\circ}C$) was injected in intermittent (Q=1,500 mL/min, 10 minute injection and 10 minute idle) modes. We performed microcosm tests using the groundwater samples to assess TPH reductive remediation activity. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for hot air sparging experiment with sludge soil samples that were closely related to Bacillus (149 bp, Firmicutes), Methlobacterium (149 bp, Euryarchaeotes), Pseudomonas (492 bp, ${\gamma}$-Proteobacteria), etc., in the clone library. In this study we find that TPH-water was reduced to 78.9% of the initial value in this experiment aquifer. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil fate of microorganisms in natural microbial community.

Metabolic Pathways of Hydrogen Production in Fermentative Acidogenic Microflora

  • Zhang, Liguo;Li, Jianzheng;Ban, Qiaoying;He, Junguo;Jha, Ajay Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.668-673
    • /
    • 2012
  • Biohydrogen production from organic wastewater by anaerobically activated sludge fermentation has already been extensively investigated, and it is known that hydrogen can be produced by glucose fermentation through three metabolic pathways, including the oxidative decarboxylation of pyruvic acid to acetyl-CoA, oxidation of NADH to $NAD^+$, and acetogenesis by hydrogen-producing acetogens. However, the exact or dominant pathways of hydrogen production in the anaerobically activated sludge fermentation process have not yet been identified. Thus, a continuous stirred-tank reactor (CSTR) was introduced and a specifically acclimated acidogenic fermentative microflora obtained under certain operation conditions. The hydrogen production activity and potential hydrogen-producing pathways in the acidogenic fermentative microflora were then investigated using batch cultures in Erlenmeyer flasks with a working volume of 500 ml. Based on an initial glucose concentration of 10 g/l, pH 6.0, and a biomass of 1.01 g/l of a mixed liquid volatile suspended solid (MLVSS), 247.7 ml of hydrogen was obtained after a 68 h cultivation period at $35{\pm}1^{\circ}C$. Further tests indicated that 69% of the hydrogen was produced from the oxidative decarboxylation of pyruvic acid, whereas the remaining 31% was from the oxidation of NADH to $NAD^+$. There were no hydrogen-producing acetogens or they were unable to work effectively in the anaerobically activated sludge with a hydraulic retention time (HRT) of less than 8 h.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

중온 및 고온 혐기성 소화에서 메탄생성균 군집 분석에 관한 연구 (In situ Analysis of Methanogenic Bacteria in the Anaerobic Mesophilic and Thermophilic Sludge Digestion)

  • 황선진;장현섭;엄형춘;장광언
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.515-521
    • /
    • 2004
  • Anaerobic digestion has many advantages over the more conventional aerobic treatment processes such as low levels of excess sludge production, low space (area) requirements, and the production of valuable biogas. The purpose of this study was to evaluate the effect of organic loading rate of anaerobic digestion on thermophilic($55^{\circ}C$) and mesophilic($35^{\circ}C$) conditions. Fluorescent in situ hybridization (FISH) method was also used to study the microbial community in the reactors. The stabilizing time in mesophilic anaerobic reactors was shorter as approximately 20 days than 40 days in the thermophilic anaerobic reactors. The amount of methane production rate in anaerobic reactors was independent of the concentrations of supplied substrates and the amount of methanogens. When the microbial diversity in the mesophilic and thermophilic reactors, which had been treated with acetate-based artificial wastewater, were compared, it was found that methanogenesis was carried out by microbial consortia consisting of bacteria and archaea such as methanogens. To investigate the activity of bacterial and archaeal populations in all anaerobic reactors, the amount of acetate was measured. Archaea were predominant in all reactors. Interestingly, Methanothrix-like methanogens appeared in mesophilic anaerobic reactors with high feed substrate concentrations, whereas it was not observed in thermophilic anaerobic reactors.

MBT 폐수의 생분해성 평가 (Evaluation on the Biodegradability of the MBT Wastewater)

  • 임지영;박정환;김진한
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.86-92
    • /
    • 2016
  • 본 연구는 가황촉진제 제조공정에서 발생되는 MBT 폐수의 생물학적 처리가능성을 평가하였다. MBT 폐수는 미생물 활동을 저하시키기 때문에 생물학적으로 처리가 불가능하였지만, 7일의 순응기간을 거쳐 약 10%의 COD가 제거되었다. MBT 폐수의 화학적 전처리를 위한 최적조건은 pH 3.5, 2시간동안 교반 후 $Fe^{3+}$를 주입하여 펜톤산화를 한 경우였다. 또한, 펜톤처리 된 MBT 폐수를 제지폐수와 혼합하여 활성슬러지공정에서 처리했을 경우 MBT 폐수의 COD가 약 20% 제거되었다.

Anaerobic Lipid Degradation Through Acidification and Methanization

  • Kim,, I-Jung;Kim, Sang-Hyoun;Shin, Hang-Sik;Jung, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.179-186
    • /
    • 2010
  • In biological wastewater treatment, high lipid concentrations can inhibit the activity of microorganisms critical to the treatment process and cause undesirable biomass flotation. To reduce the inhibitory effects of high lipid concentrations, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor in series, was applied to synthetic dairy wastewater treatment. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double-bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid, and volatile fatty acid (VFA) removal efficiencies were greater than 80%, 70%, and 95%, respectively, up to an organic loading rate of 6.5 g COD/l/day. No serious operational problems, such as significant scum formation or sludge washout, were observed. Protein degradation was found to occur prior to degradation during acidogenesis.