• Title/Summary/Keyword: Sludge Reduction

Search Result 317, Processing Time 0.024 seconds

Operating Characteristics of Composting Facility during Composting of Food Waste and Co-composting of Food Waste and Sewage Sludge (음식물쓰레기 단독 퇴비화 및 음식물쓰레기와 하수 슬러지의 혼합 퇴비화에 따른 퇴비화시설의 운전특성)

  • 남궁완;이노섭;박준석;인병훈;허준무;박종안
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2002
  • This study was performed to assets the operating characteristics of food waste composting and co-composting (food waste + sewage sludge) at a compelling facility. The facility was being operated successfully without being affected by kind of composting feed materials. Partial anaerobic condition was detected during food waste composting and co-com-posting, but these two composting systems were proven to be operated successfully under aerobic condition from the monitoring results of $O_2$, volatile solids reduction rate, temperature, and other parameters. The conductivity and chloride concentrations of compost were gradually increased during two composting periods, but the conductivity and chloride concentrations of co-compelling indicated lower values than those of food waste composting at final point(40 m). As a result, co-composting was turned out to be more desirable than food waste composting, considering salt problem. High correlations ($R^2$= 0.9265 for food waste composting and $R^2$= 0.9685 for co-composting) between CEC and volatile organic matter were found. Quality of composts produced from two composting process satisfied Korean heavy metal standard.

Solid household waste characterization and fresh leachate treatment: Case of Kasba Tadla city, Morocco

  • Benyoucef, Fatima;Makan, Abdelhadi;El Ghmari, Abderrahman;Ouatmane, Aziz
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.363-369
    • /
    • 2015
  • This study aims to characterize solid household waste and to present physicochemical characteristics of fresh leachate before landfilling in Kasba Tadla city, Morocco. Obtained results show that household waste produced in 2013 were about 11,787 tons, or 0.27 tons/capita/year. These wastes were composed essentially of organic materials (74%), paper (8%), plastics (9%), metals (1%), and glass (0.5%). However, monthly produced leachate ranges from a maximum of $130.92m^3$ during summer and a minimum of $21.88m^3$ in winter. Moreover, leachate treatment using Upflow Anaerobic Sludge Blanket technique was accompanied by a decrease in electrical conductivity, certainly related to leachate-sediment chemical exchanges. Otherwise, the same acidity reduction phenomenon occurs when pH value increased from 4.49 to 6.17 after 24 hours, confirming the system response since the early stages of treatment. In addition, temporal evolution of the treatment efficiency in terms of COD highlighted a very important reduction which reached 94% after 5 days with an average temperature of $25^{\circ}C$.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Application of a Thermophilic Aerobic Digestion Process to Industrial Waste Activated Sludge Treatment

  • Kim, Young-Kee;Eom, Yong-Suk;Oh, Byung-Keun;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.570-576
    • /
    • 2001
  • Thermophilic aerobic bacteria were applied in the degradation of industrial waste activated sludge (WAS) on a laboratory scale expreiment. The performance of digestion was estimated by measuring the reduction of total suspended solids (TSS), dissolved organic carbon (DOC), and total organic carbon (TOC). Among three strains of Bacillus stearothermophilus and three strains of Thermus species, B. stearothemophilus ATCC 31197 showed the best overall efficiency level for the degradation of industrial WAS, which was collected from a wastewater treatment plant in an oil refinery factory. Industrial WAS coul be successfully detraded in a batch digestion with ATCC 31197. The stability of the digestion process with ATCC 31197 was successfully verified by semi-continuous (fill-and-draw) digestion experiment. From the results of this study, it was shown that the thermophilic aerobic digestion process with ATCC 31197 could efficiently be applied to the degradation of industrial WAS.

  • PDF

Cultivable Bacterial Community Analysis of Dairy Activated Sludge for Value Addition to Dairy Wastewater

  • Biswas, Tethi;Chatterjee, Debasmita;Barman, Sinchini;Chakraborty, Amrita;Halder, Nabanita;Banerjee, Srimoyee;Chaudhuri, Shaon Ray
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.585-595
    • /
    • 2019
  • Analysis of bacterial communities based on their 16S rDNA sequences revealed the predominance of Proteobacteria (Aeromonas sp., Acinetobacter sp. and Thaueraamino aromatica sp.) and uncultured bacterium in activated sludge from the effluent treatment plant (ETP) of Mother Dairy, Calcutta (India). Each isolate was used for bioremediation of dairy wastewater with simultaneous conversion of nitrogenous pollutants into ammonia. A consortium developed using seven of these isolates and three Bacillus strains from different environmental origins could reduce 93% nitrate with simultaneous production of ammonia (626 ㎍/100 ml) within 20 h in non-aerated, immobilized conditions as compared to 82% nitrate reduction producing 2.4 ㎍/100 ml ammonia in 96 h with extensive aeration in a conventional ETP. The treated ammonia-rich effluent could be used instead of freshwater and fertilizer during cultivation of mung bean with 1.6-fold increase in grain yield. The ETP with the surrounding agricultural land makes this process a zero liquid discharge technology for using the biofertilizer generated. In addition, the process requires minimal energy supporting sustained environmental health. This method is thus proposed as an alternative approach for small-scale dairy ETPs.

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

The Evaluation of Scum Recyclability from Waste Sludge in Linerboard Mills (라이너지 제조공정 탈수 슬러지의 scum 재이용 가능성 평가)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • For the purpose of reduction of production cost in the industrial papermaking process, the use of waste paper has been more and more increased as a fibrous raw material, and the closed system of white water became closed more than ever. "Scum" indicates the floated sludge by a flotation during primary wastewater treatment process in paper mills. If the scum is used as the raw material, it could reduce both the raw material and solid waste treatment cost with even small quantity. In this study, the element survey and the toxicity measurement was carried out for recycling scum. A load factor of stock preparation process in paper mills was measured by somerville screen. Physical properties of paper sheet containing the accepted scum from the stock of AOCC or KOCC were evaluated. The result of this study shows that recycling scum has potential to be used in paper making system. It also might be able to reduce the required energy used by the pressing or drainage process, the raw material cost, and solid waste treatment cost due to the recycling of scum.

Decontamination of radioactive wastewater by two-staged chemical precipitation

  • Osmanlioglu, Ahmet E.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.886-889
    • /
    • 2018
  • This article presented two-staged chemical precipitation for radioactive wastewater decontamination by using chemical agents. The total amount of radioactive wastewater was $35m^3$, and main radionuclides were Cs-137, Cs-134, and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17, and 9 Bq/L for Cs-137, Cs-134 and Co-60, respectively. Potassium ferrocyanide, nickel nitrate, and ferrum nitrate were selected as chemical agents at high pH levels 8-10 according to the laboratory jar tests. After the process, radioactivity was precipitated as sludge at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 66.5, 8.6, and 9 for Cs-137, Cs-134, and Co-60, respectively. By using the potassium ferrocyanide, about 98% of the Cs-137 was removed at pH 9. At the bottom of the tank, radioactive sludge amount from both stages was totally $0.98m^3$. It was transferred by sludge pumps to cementation unit for solidification. By chemical processing, 97.2% of volume reduction was achieved. The potassium ferrocyanide in two-staged precipitation method could be used successfully in large-scale applications for removal of Cs-137, Cs-134, and Co-60.

Characteristics of White Portland Cement Clinker Produced from Low-temperature Sintering Technology using Fluorine based Semiconductor Sludge (불소 함유 반도체 슬러지를 활용한 저온 소성 기술로 제조된 백색 포틀랜드 시멘트 클링커 특성)

  • Su-Hyeon Park;Hyun-Yeop Na;Bong-Choon Hwang;Ju-il Eom;Yun-Yong Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • In this paper, the effect on cement clinker and cement quality was studied to prove the effect of reducing the sintering temperature of cement clinker as a mineralizer to recycle fluorine based semiconductor sludge, an industrial by-product. In addition, a verification study was conducted to compare the properties of clinker and cement at different temperatures when natural fluorite, previously used as a mineralizer, was used. As a result of the study, semiconductor sludge showed sufficient effectiveness as a mineralizer and could replace natural fluorite, an existing mineralizer.