• Title/Summary/Keyword: Slotted flap

Search Result 12, Processing Time 0.02 seconds

The EDISON_CFD Analysis for Lift-enhancing tab of slotted flap (Slotted Flap 사이 양력 향상 탭의 영향에 대한 EDISON_CFD 분석)

  • Choe, Chi-Yeong;Lee, Jae-Gyeong;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.437-441
    • /
    • 2013
  • 항공기의 날개에 걸리게 되는 하중은 설계단계에서 고정되기 때문에 이륙과 착륙 같은 특수한 상황에서는 Flap이나 슬렛 등의 고양력 장치를 이용하여 날개 단면 형상을 변화시킴으로서 양력계수의 변화를 유도하고 그에 따라 각 임무별 최적의 공력 성능을 제공할 수 있게 된다. 따라서 본 논문은 에어포일의 보다 효율적인 양력을 위해 slotted flap사이에 양력 향상 Tab을 설치하여 EDISON-CFD을 이용하여 분석하였다. 그리고 그 효과와 익형에 얻어지는 양력계수를 비교하였다. 에어포일의 Slotted Flap에 양력 향상 Tab의 유무에 따른 유동 장을 분석하여 양력을 수치 해석 적으로 비교해 보았다. 결과에서 얻어진 상수를 비교하였고 양력 향상 Tab의 효과를 분석해 보았다.

  • PDF

Slotted flap을 부착한 WIG선에서의 수치해석 및 진동 저감을 위한 플랩 형상 최적설계

  • Baek, Seung-Chan;Yang, Ji-Hye
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.541-547
    • /
    • 2016
  • 본 연구에서는 Slotted flap을 장착한 WIG선(Wing In Ground effect ship)에서 발생하는 진동을 최소화하기 위해 WIG선의 공력특성을 수치적으로 분석하고 그에 따라 플랩 형상에 대하여 최적화를 진행하였다. 주 익형에 대한 형상은 NACA 4412로 고정한 상태에서 플랩의 각도와 x, y좌표를 설계변수로 설정하였으며, 그에 따라 설정한 평균 $C_L$값을 유지하면서 진동의 진폭 크기가 작아지도록 제한 조건 및 목적 함수를 설정하였다. 최적화된 익형에서 플랩과 주 익형 사이에서 분출되는 유체는 코안다 효과의 영향을 받아 플랩 윗부분을 타고 흐른다. 이로 인해 진동에 결정적인 영향을 미치는 박리영역이 억제되었으며, 진동이 최소화 되었다. 결론적으로 플랩의 최적화를 통하여 기본 설계 익형에서 89%의 진동이 저감되는 것과 동시에 Lift/Drag 96.2로 기본 설계 익형에 비해 4.1배 향상되었다.

  • PDF

A single slotted morphing flap based on SMA technology

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario;Karagiannis, Dimitrios
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.819-835
    • /
    • 2016
  • In this paper, the activities carried out within the EU funded Clean Sky Joint Technology Initiative (JTI GRA) Project and aimed at developing a morphing flap, are illustrated. The reference device is a regional aircraft single slotted flap, enhanced with deforming capabilities to obtain improved hyper-lift performance. The design started with the identification of the internal architecture, intended to allow camber variations. A concentrated-hinge architecture was selected, for its ability to fit different curvatures and for the possibility of easily realizing an "armadillo-like" configuration, then avoiding the use of a complicate deformable skin. The flap layout is made of segmented ribs, elastically hinged each other and span-wise connected by conventional spars. Relative rotations of the rib elements are forced by SMA structural actuators, i.e., cooperating in the external loads absorption. Super-elastic SMA are used to make up recovery elastic elements, necessary to regain the original shape after activation. These further elements in turn contribute to the overall flap rigidity. After assessing the hinge number and the size of the SMA active and passive elements, the advanced design phase was dealt with. It was aimed at solving manufacturing issues and producing the executive drawings. The realized demonstrator was finally tested in lab conditions to prove its functionality in terms of whether target shape actuation or attained shape preservation under loads. On the basis of the numerical results and the experimental outcomes, precious hints were obtained for further developments of the concept.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi Seong-Wook;Kim Jai-Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.165-171
    • /
    • 2004
  • Smart UAV, which adopting tiltrotor aircraft concept, requires long endurance and high speed capability simultaneously These two contradictable flight performances are hard to meet with single wing concept and inevitably require the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the performance requirement, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flaps. Considering aerodynamic performance and manufacturing simplicity, a final flap configuration is selected.

  • PDF

The Shearing Characteristics of the Model Otter Boards with the Flap (Flap을 부착한 모형전개판의 전개성능)

  • KIM Yong-Hae;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.484-488
    • /
    • 1987
  • The model experiments were performed in tile circular water tank on the simple cambered and the super-V otter boards attached with the slotted fowler flap at the trailing edge in order to develop more efficient shearing characteristics. The dimension of the model otter boards was varied slightly in the flap chord ratio $0.20\~0.22$ and in the area $432\~426cm^2$ in accordance with the flap angle $30\~50^{\circ}$. The maximum shearing coefficient $C_L=1.78$ and hydrodynamic efficiency $C_L/C_D=4.0$ in the superV type were higher than their efficiencies $C_L=1.75$ and $C_L/C_D=3.7$ in the simple cambered type. As the shearing forces of the otter boards with flap were increased $20\~30\%$ mere than these without flap in spite of increasing the drag and the instability. The effect of flap should be fully investigated for the application.

  • PDF

Optimisation of a novel trailing edge concept for a high lift device

  • Botha, Jason D.M.;Dala, Laurent;Schaber, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.329-343
    • /
    • 2015
  • This study aimed to observe the effect of a novel concept (referred to as the flap extension) implemented on the leading edge of the flap of a three element high lift device. The high lift device, consisting of a flap, main element and slat is designed around an Airbus research profile for sufficient take off and landing performance of a large commercial aircraft. The concept is realised on the profile and numerically optimised to achieve an optimum geometry. Two different optimisation approaches based on Genetic Algorithm optimisations are used: a zero order approach which makes simplifying assumptions to achieve an optimised solution: as well as a direct approach which employs an optimisation in ANSYS DesignXplorer using RANS calculations. Both methods converge to different optimised solutions due to simplifying assumptions. The solution to the zero order optimisation showed a decreased stall angle and decreased maximum lift coefficient against angle of attack due to early stall onset at the flap. The DesignXplorer optimised solution matched that of the baseline solution very closely. The concept was seen to increase lift locally at the flap for both optimisation methods.

Numerical Study on the Flow Field about Multi-element Airfoils and the Effect of the Lift-enhancing Tabs (다중-익형 주위 유동장 및 양력-향상 탭의 영향에 대한 수치적 연구)

  • Park, Yin-Chul;Chang, Suk;Lee, Deuk-Young;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.331-336
    • /
    • 2011
  • The flow fields over multi-element airfoils with lift-enhancing flat-plate tabs were numerically investigated. Common choice of the height of the lift-enhancing tabs usually ranges from 0.25% to 1.25% of the reference airfoil chord, and in this study the effect of the position of the tab with l%-chord height was studied by varying the distance of the tab from the trailing edge ranging from 0.5% to 2% of the reference chord. In this paper, the effects of lift-enhancing tabs with various position were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Computed streamlines show that the additional turning caused by the tab reduces the amount of separated flow on the flap.

  • PDF

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification (인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계)

  • Park, Jinhwan;Tyan, Maxim;Nguyen, Nhu Van;Kim, Sangho;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.649-656
    • /
    • 2013
  • High-lift devices have a major influence on takeoff, landing and stall performance of an aircraft. Therefore, a slotted flap design optimization process is proposed in this paper to obtain the most effective flap configuration from supported 2D flap configuration. Flap deflection, Gap and Overlap are considered as main contributors to flap lift increment. ANSYS Fluent 13.0.0$^{(R)}$ is used as aerodynamic analysis software that provides accurate solution at given flight conditions. Optimum configuration is obtained by Sequential Quadratic Programing (SQP) algorithm. Performance of the aircraft with optimized flap is estimated using Aircraft Design Synthesis Program (ADSP), the in-house performance analysis code. Obtained parameters such as takeoff, landing distance and stall speed met KAS-VLA airworthiness requirements.

Computational Study on Dynamic Characteristics of a Flapped Airfoil (전산해석을 이용한 고양력장치의 동특성 고찰)

  • Lee, Yung-Gyo;Kim, Cheol-Wan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206-209
    • /
    • 2011
  • During landing approach, an airplane could experience dynamic unstable motion by the combination of a gust and elevator control to cancel the disturbances. This situation is dangerous and could lead to a loss of an airplane. In this paper, numerical analysis was used to study the effect of pitch oscillating 2-D high lift devices in a landing condition. Experimental data on a pitching naca0012 airfoil was used for code validation. Dynamic characteristics of an airfoil, single slotted flap for mid-class passenger aircraft were analyzed. Unsteady Navier-Stokes analysis was performed with Spalart-Allmaras turbulence model for separation dominant low speed flow. As a result, flow hysteresis of a flapped airfoil was more complex than that of an oscillating airfoil. So, dynamic analysis of a flap in a landing condition is very important for operational safety.

  • PDF