• Title/Summary/Keyword: Slope Difference

Search Result 733, Processing Time 0.026 seconds

Beach Resort Formation and Development Processes by Fabric Construction in an Island Environment (구조물 축조에 의한 도서지역 해수욕장의 발달과정에 관한 연구 -완도군 보길면 지역을 사례로-)

  • 박의준;황철수
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.4
    • /
    • pp.474-482
    • /
    • 2001
  • The purpose of this study is to investigate the formation and development processes of beach resort by fabric construction in a island environment. The results are as follows. (1) The research area(Tong-ri beach, Bokil-myon, Chollanam-do)has been transformed to belch by sedimentary environmental change since latter half of 1800's. (2) The mean slope of beach face is 0.96°, and the difference of attitude between beach and mud flat face is 75cm. (3) The mean particle size of beach surface sediment is 3.53$\Phi$. This value is very finer than that of any other beach in Korea peninsula. But its value is coarser than that of mud flat surface sediment. (4) The particle size distribution of core sediment is become changed to fine particle in 70cm depth. This value is corresponded to difference of altitude between beach face and mud flat face. (5) The analysis of aerial photographs after 1970 indicates that sedimentation process was not brisked since 1970's. Consequently, the research ares has been developed by sedimentary environmental change for sea-level rise effect and wave height energy rise effect.

  • PDF

Physical Geography of Munkyung (문경의 자연지리)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.15-30
    • /
    • 1998
  • Physical geography is the discipline which deals with the relationship between man and natural environment. Therefore, it should be studied as the organized unity. In this paper I recognize the drainage basin as a framework outlining physical geography, describe the difference of inhabitant's life style due to the difference of natural environment in the drainage basin, and consider the meaning of drainage basin as a unit of life(and unit of regional geography). Munkyung is divided into three regions(intermontane basin region, middle mountainous region, marginal hilly region of the great basin) owing to the topographic characteristics. Subdivision in these regions is related closely to drainage network distribution, specially in intermontane basin region. And small regions have developed with the confluence point of $3{\sim}4$ order streams as the central figure. Intermontane basin region is the valley floor of Sinbuk-Soya-Kauun-Nongam stream located in the limestone region which is exposed according to Munkyung fault at its northern part. Small streams are affected strongly by the influence of the NNE-SSE or WNW-ESE tectolineament. Thus Kaeripryungro(鷄立嶺路), Saejaegil(새재길), Ewharyungro(伊火嶺路) and so on are constructed through the tectolineament. In the valley floors of small streams which flow into the intermontane basin, there are large floodplains. Floodplain in Sinbuk, Joryung, and Yangsan stream is used to paddy field or orchard, and in Nongam stream is used to paddy field or vegetable field. Hills are distributed largely in the periphery of intermontane basin. Limestone hills in Kauun and Masung basin are not continuous to the present low and flat floodplain, and most of those are used to forest land and field. On the other side. granite hills in Koyori are continuous to be used to the present floodplain, and they are used to residential area and field. In the middle mountainous region are there hilly mountains constructed in the geology of Palaeozoic Pyeongan System in northern area and Chosun System's Limestone Series in southern area, and banded gneiss and schist among Sobaeksan Gneiss Complex. In Palaeozoic Pyeongan System region are there relatively rugged mountains and ingrown meanders developed along tectolineaments. Chosun System's Limestone Series region builds up a geomorphic surface, develops various karst landforms. Mountainous area is used to field. On the other hand, especially in case of Hogye, valley bottom is wide, long, and discontinuous to slope, is used to paddy field dominantly. And schist region in Youngnam Block of Pre-Cambrian is rugged mountainous. Marginal hilly region of the great basin is hilly zone located in the margin of erosional basin(Bonghwa-Youngju-Yechon-Hamchang-Sangju). This region is lower geomorphic surface which is consisted of hills of $50{\sim}100$m height. Hills are used to field or orchard, and dissected gentle depression is used to paddy field.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.

The Survey on Actual Condition Depending on Type of Degraded area and Suggestion for Restoration Species Based on Vegetation Information in the Mt. Jirisan Section of Baekdudaegan (식생정보에 기초한 백두대간 지리산권역 내 훼손지 유형별 실태조사)

  • Lee, Hye-Jeong;Kim, Ju-Young;Nam, Kyeong-Bae;An, Ji-Hong
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.558-572
    • /
    • 2020
  • The purpose of this study was to classify the types of degraded areas of Mt. Jirisan section in Baekdudaegan and survey the actual condition of each damage type to use it as basic data for the direction of the restoration of damaged areas according to damage type based on the vegetation information of reference ecosystem. The analysis of the Mt. Jirisan section's actual degraded conditions showed that the total number of patches of degraded areas was 57, and the number of patches and size of degraded areas was higher at the low average altitude and gentle slope. Grasslands (deserted lands) and cultivated areas accounted for a high portion of the damage types, indicating that agricultural land use was a major damage factor. The survey on the conditions of 14 degraded areas showed that the types of damage were classified into the grassland, cultivated area, restoration area, logged-off land, and bare ground. The analysis of the degree of disturbance (the ratio of annual and biennial herb, urbanized index, and disturbance index) by each type showed that the simple single-layer vegetation structure mostly composed of the herbaceous and the degree of disturbance were high in the grassland and cultivated land. The double-layer vegetation structure appeared in the restoration area where the pine seedlings were planted, and the inflow of naturalized plants was especially high compared to other degraded areas due to disturbances caused by the restoration project and the nearby hiking trails. Although the inflow of naturalized plants was low because of high altitude in bare ground, the proportion of annual and biennial herb was high, indicating that all surveyed degraded areas were in early succession stages. The stand ordination by type of damage showed the restoration area on the I-axis, cultivated area, grassland, logged-off land, and bare ground in that order, indicating the arrangement by the damage type. Moreover, the stand ordination of the degraded areas and reference ecosystem based on floristic variation showed a clear difference in species composition. This study diagnosed the status of each damage type based on the reference ecosystem information according to the ecological restoration procedure and confirmed the difference in species composition between the diagnosis result and the reference ecosystem. These findings can be useful basic data for establishing the restoration goal and direction in the future.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium-82 PET (휴식/부하 심근 Rubidium-82 양전자단층촬영과 부하/휴식 심근 Tc-99m-MIBI 단일광자단층촬영의 비교)

  • Lee, D.S.;Kang, K.W.;Lee, K.H.;Jeong, J.M.;Kwark, C.;Chung, J.K.;Lee, M.C.;Seo, J.D.;Koh, C.S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1995
  • We compared stress/rest myocardial Tc-99m-MIBl tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed : rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709 stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBl scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9 (rest)) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segemental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting Ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day-human studies, these segmental analyses with simultaneous examination in patients told that rubidium PET flow studies disclose ischemia more often than MIBI studies and that rest MIBI studies in same-day stress/rest-sequence gave a little larger rest defect than they would have shown.

  • PDF

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

Influence of Microcrack on Brazilian Tensile Strength of Jurassic Granite in Hapcheon (미세균열이 합천지역 쥬라기 화강암의 압열인장강도에 미치는 영향)

  • Park, Deok-Won;Kim, Kyeong-Su
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.41-56
    • /
    • 2021
  • The characteristics of the six rock cleavages(R1~H2) in Jurassic Hapcheon granite were analyzed using the distribution of ① microcrack lengths(N=230), ② microcrack spacings(N=150) and ③ Brazilian tensile strengths(N=30). The 18 cumulative graphs for these three factors measured in the directions parallel to the six rock cleavages were mutually contrasted. The main results of the analysis are summarized as follows. First, the frequency ratio(%) of Brazilian tensile strength values(kg/㎠) divided into nine class intervals increases in the order of 60~70(3.3) < 140~150(6.7) < 100~110·110~120(10.0) < 90~100(13.3) < 80~90(16.7) < 120~130·130~140(20.0). The distribution curve of strength according to the frequency of each class interval shows a bimodal distribution. Second, the graphs for the length, spacing and tensile strength were arranged in the order of H2 < H1 < G2 < G1 < R2 < R1. Exponent difference(λS-λL, Δλ) between the two graphs for the spacing and length increases in the order of H2(-1.59) < H1(-0.02) < G2(0.25) < G1(0.63) < R2(1.59) < R1(1.96)(2 < 1). From the related chart, the six graphs for the tensile strength move gradually to the left direction with the increase of the above exponent difference. The negative slope(a) of the graphs for the tensile strength, suggesting a degree of uniformity of the texture, increases in the order of H((H1+H2)/2, 0.116) < G((G1+G2)/2, 0.125) < R((R1+R2)/2, 0.191). Third, the order of arrangement between the two graphs for the two directions that make up each rock cleavage(R1·R2(R), G1·G2(G), H1·H2(H)) were compared. The order of arrangement of the two graphs for the length and spacing is reverse order with each other. The two graphs for the spacing and tensile strength is mutually consistent in the order of arrangement. The exponent differences(ΔλL and ΔλS) for the length and spacing increase in the order of rift(R, -0.08) < grain(G, 0.14) < hardway(H, 0.75) and hardway(H, 0.16) < grain(G, 0.23) < rift(R, 0.45), respectively. Fourth, the general chart for the six graphs showing the distribution characteristics of the microcrack lengths, microcrack spacings and Brazilian tensile strengths were made. According to the range of length, the six graphs show orders of G2 < H2 < H1 < R2 < G1 < R1(< 7 mm) and G2 < H1 < H2 < R2 < G1 < R1(≦2.38 mm). The six graphs for the spacing intersect each other by forming a bottleneck near the point corresponding to the cumulative frequency of 12 and the spacing of 0.53 mm. Fifth, the six values of each parameter representing the six rock cleavages were arranged in the order of increasing and decreasing. Among the 8 parameters related to the length, the total length(Lt) and the graph(≦2.38 mm) are mutually congruent in order of arrangement. Among the 7 parameters related to the spacing, the frequency of spacing(N), the mean spacing(Sm) and the graph (≦5 mm) are mutually consistent in order of arrangement. In terms of order of arrangement, the values of the above three parameters for the spacing are consistent with the maximum tensile strengths belonging to group E. As shown in Table 8, the order of arrangement of these parameter values is useful for prior recognition of the six rock cleavages and the three quarrying planes.

The comparison and chronology of the lower marine terraces in the mid-eastern coast of Korean peninsula (韓反島 中部東海岸 低位海成段丘의 對比와 編年)

  • ;Choi, Seong-Gil
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.2
    • /
    • pp.103-119
    • /
    • 1995
  • This Paper aims to compare the lower marine terraces distributed from Muckho to Gangneung in the mid-eastern coast of Korean peninsula by the geomorphic method of using characteristies of terrace features and terrace deposits, paleosol, and fossil cryogenic structures, and to estimate the age of the lower marine terraces on the basis of the comparisons of those with the characteristics of thalassostatic terrace in adjacent rivers. The 1ower marine terraces in this area can be classified into two levels, i.e., lower marine terrace I and II surfaces, in desending order, according to the difference of former shoreline altitude. The former shoreline heights of the lowerm marine terrace I and II surfaces are 18m and 10m, respectiveiy. The width of the I surface is broader and distributed more continuousiy than that of II surface. Daejin I surface in Muckho coast, and Myeongju and Anin terrace in Gangneung coast could be classified into the lower marine terrace I surface, and Daejin II surfaCe into II surface. The Surface of ancient shore platform of the lower marine terrace I and II surfaces were weathered, and the color of the terrace deposit ranges from red to reddish brown. And this terrace deposit is covered with slope deposit of Last Glacial or fossil periglacial structures (platy structure and vecicle) of Last Glacial are formed in terrace deposit. These facts indicate that the lower marine terrace I and II surfaces had been formed before the Last Glacial, and then affected by chemical weathering under warm environment, finally followed by cold period. But the deposit of the lower marine terrace I surface is more weathered than that of II surface. And pseudogleyed red soil, which is developed in I but not in II surface, could be judged to have been formed in the Last Interglacial culmination stage (Oxygen isotope stage 5e). Therefore, in terms of the degree of weathering of the terrace deposit and the existence of pseudogleyed red soil, the age of both terrace is thought to be a little different. And the characteristics of the above mentioned II surface are accord with those of thalassostatic terrace formed in middle or late period of the Last Interglacial (5e or 5a). Thus on the basis of above all points, the lower marine terrace I and II surfaces in this area could be seen to have formed in the Last Interglacial culmination stage and middle or late period of the Last Interglacial, respectively. Because the lower mamine terrace I surface is broadry distributed in the eastern coast of Korea nPeninsula, the surface could be used to be a key surface in studying Quaternary marine terraces.

  • PDF

Changes in the inward current and membrane conductance after fertilization in the mouse eggs (수정에 의한 Mouse egg의 세포막전류 변화)

  • Hong, Seong-geun;Park, Choon-ok;Han, Jae-hee;Kim, Ik-hyun;Ha, Dae-sik;Kwun, Jong-kuk
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.157-164
    • /
    • 1992
  • Changes in the both inward current and conductance of membrane by the fertilization were observed using the one microelectrode voltage clamp(or switch clamp) technique. Unfertilized eggs and both 1- and 2-cell stage eggs after fertilization were donated from the superovulated mouse (ICR, more than 6 weeks old) treated with PMSG(pregnant mare serum gonadotropin, Sigma) and HCG(human chorionic gonadotropin, Sigma) and naturally mated ones, respectively in this experiment. Membrane potential was held at -90mV and the voltage step was applied from -80mV to 50mV with interval of 10mV or 20mV for 300ms. since both of amplitudes and time courses in the membrane currents were various according to the states of cells and clamping condition, results were presented by their $averages{\pm}SEM$(standard mean error)and ratios or percentages. Inward currents began to appear in response to the step depolarization from -60mV and reached its maximum at -50mV. However, since the potential was not clamped evenly during the voltage step, current-voltage(I-V) relationship might be positively shifted 10 or 20mV. From the steady-state currents plotted in the I-V curve, outward rectification was markedly observed. Peak inward currents$(i_{in})$ at -50mV were $-0.62{\pm}0.23nA$(n=4),$-0.52{\pm}0.25nA$(n=5) and $-0.37{\pm}0.25nA$(n=6), in the 1-cell stage, 2-cell stage fertilized eggs and in the unfertilized eggs, respectively. Pure inward current (difference between steady-state and peak, $i_{in. pure}$) were $-1.01{\pm}0.23nA$, $-0.69{\pm}0.43nA$ and $-0.68{\pm}0.29nA$, respectively in the 1-cell stage fertilized eggs, unfertilized eggs and 2-cell stage fertilized eggs. These results suggested that the outward current in fertilized eggs of 2-cell stage was more increased than those in the unfertilized eggs. Pure inward currents in the all stages of eggs showed a similar fashion in the I-V relationship from -50mV to 50mV and reversal potential at 50mV. Time constant of inactivation$({\tau})$ in the inward current was decreased as the membrane potential was depolarized in the unfertilized and 2-cell stage eggs but in the 1-cell stage eggs t was not likely to be affected significantly. Slope conductances were 14.2nS, 8.9n5 and 7.7nS in the 1-cell, 2-cell stage fertilized eggs and the unfertilized eggs, respectively. Membranes between two cells within a zona pellucida seem to be electrical-connected in the 2-cell stage eggs from the observation made in the analysis for the electronic spread and decay to the current stimuli. Both of inward current and membrane conductance were increased after fertilization in the mouse eggs. Inward current seems to be carried by the same ion or through the same channels up to the 2-cell stage and ion that carried inward current was thought to play important function after fertilization in the mouse eggs.

  • PDF