DOI QR코드

DOI QR Code

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3)

미세균열의 길이 및 간격 분포를 이용한 결의 평가(3)

  • Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Eui-Seob (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jung, Yong-Bok (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Tae-Jong (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yoon-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 박덕원 (한국지질자원연구원 지질환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지질환경연구본부) ;
  • 정용복 (한국지질자원연구원 지질환경연구본부) ;
  • 이태종 (한국지질자원연구원 지질환경연구본부) ;
  • 송윤호 (한국지질자원연구원 지질환경연구본부)
  • Received : 2018.12.21
  • Accepted : 2019.02.28
  • Published : 2019.03.31

Abstract

The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.

길이 및 간격-누적빈도 도표를 통하여 도출한 파라미터를 이용하여 쥬라기 거창화강암에서 발달하는 결의 특성을 분석하였다. 3개 면 및 3개 결의 평가는 (1~2) 경사각(${\alpha}^{\circ}$${\beta}^{\circ}$), (3) 교차각(${\alpha}-{\beta}^{\circ}$), (4) 지수차(${\lambda}_S-{\lambda}_L$), (5~12) 선의 길이(oa, ob, ol, os, ss', ll', ls' 및 sl'), (13~15) 길이 비(ol/os, ss'/ll' 및 ll'/sl'), (16) 평균길이((ss'+ll')/2), (17~23) 면적(${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ 및 ⏢$ll^{\prime}ss^{\prime}$) 및 (24~25) 면적차(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$)와 같은 25개 파라미터를 이용하여 수행하였다. 첫째로, 11개 파라미터(그룹 I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 및 25), 3개 파라미터(그룹 II: No. 5, 8 및 17) 그리고 2개 파라미터(그룹 III: No. 12 및 22)의 값은 각각 H(3번 결) < G(2번 결) < R(1번 결), R < G < H 및 G < H < R의 순서이다. 반면에, 상기한 3개 그룹에 속하는 파라미터의 값은 3개 면에 대하여 역순을 보여준다. 둘째로, 3개 면 및 3개 결에 대한 종합도를 작성하였다. 관계도로부터, 길이와 간격과 관련된 두 도표가 형성하는 분포형을 도출하였다. 간격과 관련된 도표는 일번 면(G1 & H1, R') 및 3번 결(H1 & H2, H)의 도면에서 상향만곡을 보여준다. 반면에, 길이와 관련된 도표는 하향 만곡을 보여준다. 이들 두 도표는 상부구간에서 볼록렌즈의 형태를 취한다. 더불어, 두 도표는 하부구간에서 서로 교차한다. 3개 면($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) 그리고 3개 결($R{\rightarrow}G{\rightarrow}H$) 사이의 두 도표가 형성하는 전반적인 형태는 역순을 보여준다. 마지막으로, 이러한 유형의 상관성 분석은 3개 채석면의 판별에 유용하다.

Keywords

HGOSBQ_2019_v28n1_1_f0001.png 이미지

Fig. 1. Sketch of microcracks parallel to the six directions of rock cleavages on rift plane (1), grain plane (2) and hardway plane (3). (a) Photomicrograph of thin section of the Geochang granite cut parallel to three planes. Black, mottled, and white areas represent quartz, feldspar and biotite, respectively. (b) Map of microcracks from total method. (c) Map of microcrack spacings. (d) and (e) Diagram of the six directions of rock cleavages on three planes. The distribution of lengths (d) and spacings (e) of microcracks are shown. The preferred orientation of microcracks in the quartz and feldspar parallel to the six directions of rock cleavages (Park, 2016a, b, c, 2017a, b, c, 2018).

HGOSBQ_2019_v28n1_1_f0002.png 이미지

Fig. 2. Diagram illustrating the intersection angle (α-β) and convergence direction (3) between two exponential straight lines aa' (spacing) and bb' (length). α and β (°): slope angles of lines aa' and bb', os and ol: vertical lines to lines aa' and bb', △oaa' and △obb': right-angled triangles.

HGOSBQ_2019_v28n1_1_f0003.png 이미지

Fig. 3. The length and spacing-cumulative frequency diagrams for three planes (a, b and c) and three rock cleavages (d, e and f). Symbols of intersection angle (α-β), convergence direction, length of line and right-angled triangle are the same as ones in Table 2 and Fig. 3.

HGOSBQ_2019_v28n1_1_f0004.png 이미지

Fig. 4. The length and spacing-cumulative frequency diagram representing the six directions of rock cleavages (H2~R1) in Jurassic Geochang granite.

HGOSBQ_2019_v28n1_1_f0005.png 이미지

Fig. 5. Distribution chart for the ratio value with respect to three planes and three rock cleavages. The symbols of parameters are the same as ones in Table 3.

Table 1. The values of parameters related to two exponential straight lines for three planes

HGOSBQ_2019_v28n1_1_t0001.png 이미지

Table 2. The values of parameters related to two exponential straight lines for three rock cleavages

HGOSBQ_2019_v28n1_1_t0002.png 이미지

Table 3. The comparison of order in magnitude of parameter value among three planes and three rock cleavages

HGOSBQ_2019_v28n1_1_t0003.png 이미지

References

  1. Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan. Geosciences Journal, 15, 387-394. https://doi.org/10.1007/s12303-011-0035-7
  2. Chen, Y., Nishiyama, T., Kita, H. and Sato, T., 1997, Correlation between microfracture type and splitting planes of Inada granite and Kurihashi granodiorite. Journal of the Japan Society of Engineering Geology, 38, 196-204. https://doi.org/10.5110/jjseg.38.196
  3. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  4. Freire-Lista, D.M. and Fort, R., 2015, Anisotropy in Alpedrete granite cutting (Rift, Grain and Hardway directions) and effect on bush hammered heritage ashlars. Geophysical Research Abstracts, 17, EGU2015-9426-1, EGU General Assembly.
  5. Freire-Lista, D. M. and Fort, R., 2017, Exfoliation microcracks in building granite. Implications for anisotropy. Engineering Geology, 220, 85-93. https://doi.org/10.1016/j.enggeo.2017.01.027
  6. Jang, B.A., Kim, Y.H., Kim, J.D. and Rhee, C.G., 1998, Microcrack development in the Pocheon granite due to cyclic loading. The Journal of Engineering Geology, 8, 275-284.
  7. Jang, B.A. and Oh, S.H., 2001, Mechanical anisotropy development on the rock fabric in the Pocheon granite and its relationship with microcracks. The Journal of Engineering Geology, 11, 191-203.
  8. Kang, D.H., Jung, T.J and Lee, J.M., 2000, Static and dynamic elastic properties of the Iksan Jurassic Granite, Korea. Journal of the Korean Geophysical Society, 3, 99-112.
  9. Kang, T.H., Kim, K.Y., Park, D.W. and Shin, H.S., 2014, Influence of anisotropy of microcrack distribution in Pocheon granite rock on elastic resonance characteristics. The Journal of Engineering Geology, 24, 363-372. https://doi.org/10.9720/kseg.2014.3.363
  10. Lee, B.D., Jang, B.A., Yun, H.S., Lee, H.Y. and Jin, M.S., 1999a, Characteristics of microcrack development in granite of the Mungyeong area in Korea. The Journal of the Petrological Society of Korea, 8, 24-33.
  11. Lee, S.E., Cho, S.H., Yang, H.S. and Park, H.M., 1999b, Estimation of micro-discontinuity distribution using scanline survey in granites. Journal of Korean Society for Rock Mechanics, 9, 364-372.
  12. Park, D.W., 2005, Mechanical anisotropy of Pocheon granite under uniaxial compression. The Journal of Engineering Geology, 3, 337-348.
  13. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  14. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  15. Park, D.W., 2015a, Characteristics of the rock cleavage in Jurassic granite, Geochang. The Journal of the Petrological Society of Korea, 24, 149-160. https://doi.org/10.7854/JPSK.2015.24.3.149
  16. Park, D.W., 2015b, Evaluation for rock cleavage using distribution of microcrack lengths. The Journal of the Petrological Society of Korea, 24, 161-176.
  17. Park, D.W., 2016a, Evaluation for rock cleavage using distribution of microcrack spacings (I). The Journal of the Petrological Society of Korea, 25, 13-27. https://doi.org/10.7854/JPSK.2016.25.1.13
  18. Park, D.W., 2016b, Evaluation for rock cleavage using distribution of microcrack spacings (II). The Journal of the Petrological Society of Korea, 25, 151-163. https://doi.org/10.7854/JPSK.2016.25.2.151
  19. Park, D.W., 2016c, Evaluation for rock cleavage using distribution of microcrack spacings (III). The Journal of the Petrological Society of Korea, 25, 311-324. https://doi.org/10.7854/JPSK.2016.25.4.311
  20. Park, D.W., 2017a, Evaluation for rock cleavage using distribution of microcrack lengths and spacings (1). The Journal of the Petrological Society of Korea, 26, 1-10. https://doi.org/10.7854/JPSK.2017.26.1.1
  21. Park, D.W., 2017b, Evaluation for rock cleavage using distribution of microcrack spacings (IV). The Journal of the Petrological Society of Korea, 26. 127-141. https://doi.org/10.7854/JPSK.2017.26.2.127
  22. Park, D.W., 2017c, Evaluation for rock cleavage using distribution of microcrack spacings (V). The Journal of the Petrological Society of Korea, 26. 297-309. https://doi.org/10.7854/JPSK.2017.26.3.297
  23. Park, D.W., 2018, Evaluation for rock cleavage using distribution of microcrack lengths and spacings (2). The Journal of the Petrological Society of Korea, 27, 1-15. https://doi.org/10.7854/JPSK.2018.27.1.1
  24. Park D.W. and Seo Y.S., 2003, Mechanical anisotropy of Jurassic granites in Korea. The Journal of Engineering Geology, 13, 257-266. https://doi.org/10.3969/j.issn.1004-9665.2005.02.022
  25. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  26. Park, D.W., Seo, Y.S., Jeong, G.C. and Kim, Y.K., 2001, Microscopic analysis of the rock cleavage for Jurassic granite in Korea. The Journal of Engineering Geology, 11, 51-62.
  27. Peng, S.S. and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining, 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  28. Plumb, R., Engelder, T. and Yale, D., 1984, Nearsurface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. Journal of Geophysical Research, 89, 9350-9364. https://doi.org/10.1029/JB089iB11p09350
  29. Seo Y.S. and Jeong, G.C., 1999, Micro-damage process in granite under the state of water-saturated triaxial compression. The Journal of Engineering Geology, 9, 243-251.
  30. Seo, Y.S., Jeong, G.C., Kim, J.S. and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275. https://doi.org/10.1016/S0013-7952(01)00086-2
  31. Takemura, T. and Oda, M., 2004, Stereology-based fabric analysis of microcracks in damaged granite. Tectonophysics, 387(1), 131-150. https://doi.org/10.1016/j.tecto.2004.06.004
  32. Takemura, T., Golshani, A., Oda, M. and Suzuki, K., 2003, Preferred orientations of open microcracks in granite and their relation with anisotropic elasticity. International Journal of Rock Mechanics and Mining Sciences, 40(4), 443-454. https://doi.org/10.1016/S1365-1609(03)00014-5
  33. Thill, R.E., Bur, T.R. and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10, 535-557. https://doi.org/10.1016/0148-9062(73)90004-1
  34. Thill, R.E., Williard, R.J. and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74, 4898-4909.