• 제목/요약/키워드: Slit-nozzle

검색결과 43건 처리시간 0.021초

저온분사 코팅공정에서 초음속 슬릿노즐 사용시 유동장 해석 (A Numerical Analysis of Flow Field in the Silt Nozzle During Cold Spray Coating Process)

  • 박혜영;박종인;정훈제;장경수;백의현;한정환;김형준
    • 대한금속재료학회지
    • /
    • 제49권3호
    • /
    • pp.221-230
    • /
    • 2011
  • The cold spray process is an emerging technology that utilizes high velocity metallic particles for surface coating. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The cold spray process normally uses a circular nozzle that has a rather narrow spraying range. To overcome this fault, a slit nozzle was considered in this study. The slit nozzle is anticipated to reduce the coating process time because it has a wider coating width than the circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas and particle velocity as the circular nozzle. To improve the coating efficiency of a slit nozzle, the shape of the slit nozzle was modified. And the results of gas flow and particle behaviour according to the nozzlers shape were compared by the a numerical analysis. As a results, as Expansion Ratio(ER) of 7.5 was found to be the most optimal condition for enhancing the spraying efficiency when the ER was changed by the variation of nozzle neck and exit size.

슬릿노즐기반 응집·공기부상공정을 통한 유류폐수 전처리 (Pre-treatment of oily wastewater using a coagulation-DAF process with slit-nozzle)

  • 최상기;김영모
    • 상하수도학회지
    • /
    • 제32권6호
    • /
    • pp.479-485
    • /
    • 2018
  • Large amounts of oily wastewater discharged from various industrial operations (petroleum refining, machinery industries and chemical industries) cause serious pollution in the aquatic environment. Although dissolved air flotation (DAF) separating oil pollutants using microbubbles represents current practice, bubble size cannot be selectively controlled, and lots of power is required to generate microbubbles. Therefore, to investigate performance of the DAF process, this study examined the distribution of different sizes of microbubbles resulting from changes in physical shear force via modifying shapes of a slit-nozzle without an additional power supply. Three types of slit-nozzles (different angle, shape and length of the slit-nozzle) were used to analyze the distribution of bubble size. At a slit angle of $60^{\circ}$, shear force was 4.29 times higher than a conventional slit, and particle size distribution (PSD) in the range between 2 and $20{\mu}m$ more than doubled. Treatment efficiency of synthetic oily wastewater through the coagulation-DAF process achieved 90% removal of COD by injecting $FeCl_3$ and PACl of 250 mg/L and 100 mg/L, respectively, and the same performance resulted using $FeCl_3$ of 200 mg/L and PACl of 80 mg/L employing a slit-nozzle angle of $60^{\circ}$. This study shows that a coagulation-DAF process using a modified slit-nozzle can improve the pre-treatment of oily wastewater.

저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석 (A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES)

  • 손병철;곽호상;이상현
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.

슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구 (Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films)

  • 김기은;나정필;정모세;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

스파이럴 제트 유동에 미치는 축소노즐 각도의 영향 (The Effect of Convergent Nozzle Angle on a Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

코안다 효과를 이용한 제트 특성에 관한 연구 (A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle)

  • 이동원;이삭;김병지;권순범
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.706-713
    • /
    • 2007
  • 코안다 효과를 유발시키기 위해 환상 슬릿과 팽창률이 일정하지 않은 축소 노즐로부터 분사되는 제트의 구조와 환상의 슬릿과 팽창률이 일정한 노즐로부터 분사되는 제트의 구조를 비교 연구하였다. 실험에 있어서 노즐 입구와 출구 직경을 각각 40mm, 20mm로 하였고, 노즐 출구 평균 속도를 90m/s로 하였다. 3축 이송 장치와 스캐닝 밸브 시스템을 이용하여 제트 축 및 반경 방향 압력을 측정하고, 측정된 정압 및 전압으로부터 구한 속도 분포를 비교 검토하였다. 안정성과 수속성이 우수한 제트를 얻기 위해서는 팽창률이 일정하지 않은 노즐보다 팽창률이 일정한 축소 노즐과 환상의 슬릿을 통해 코안다 효과를 이용하여 분사하는 것이 효과적임을 밝혔다. 또한 팽창에 따른 압력 강하도 팽창률이 일정한 노즐의 경우가 상대적으로 더 작게 됨을 알았다.

가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰 (Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine)

  • 송범근;김종민;강신재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

슬릿 코터 노즐의 최적 설계 및 고속도포 공정의 적용 가능성에 대한 연구

  • 김태민;김광선;김기운;임태현;정은미
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 춘계학술대회
    • /
    • pp.169-173
    • /
    • 2007
  • Slit-coater nozzle is one of core equipments of coating process in LCD panel manufactory. As a glass substrate size become bigger, a nozzle performance and a high-speed coating process are considered important issues. To design the optimal nozzle, the characteristics of fluid inside nozzle are studied using CFD (Computational Fluid Dynamics) method. Through research on design factors, we can know the coating uniformity influenced by lip length, cavity angle and gap size. The future work for this study is to find the factors in high-speed coating process and function between factors of design.

  • PDF

정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구 (Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet)

  • 김학림;;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구 (The Effect of Annular Slit on a Compressible Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF