• 제목/요약/키워드: Sliding fuzzy controller

검색결과 181건 처리시간 0.125초

Fuzzy Logic Based Sliding Mode Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.822-825
    • /
    • 1993
  • A fuzzy logic controller derived from the variable structure control (VSC) theory is designed. Unlike the conventional design of the fuzzy controller, we do not fuzzify the error and the rate of error, but fuzzify the sliding surface. After the fuzzy sliding surface is introduced, the fuzzy rules are defined based on the sliding control theory. It will be shown this sliding mode fuzzy controller is a kind of VSC that introduces the boundary layer in the switching surface and that the control input is continuously approximated in the layer. As a result we can guarantee the stability and the robustness by the help of VSC, which were difficult to insure in the past fuzzy controllers. Simulation results for the inverted pendulum will show the validity.

  • PDF

퍼지 슬라이딩 제어기를 이용한 도립진자 제어 (Control of Inverted Pendulum using Fuzzy Sliding Mode Controller)

  • 송영목;정병호;유창완;윤석열;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2759-2761
    • /
    • 2001
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. But there ane problems in sliding mode controller. Hard in modeling system parameters, chattering, etc. In this paper, new sliding controller design method is proposed for solving the above problems using fuzzy sliding mode contros(FSMC) scheme are considered. we propose that fuzzy logic system are used to approximate unknown system functions in desinging the SMC of Inverted Pendulum. In the method, a fuzzy logic system is utilized to approximate the unknown function f of the nonlinear system. As a simulation result of applying the inverted pendulum, the sliding controller shows good robust characteristics.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

디스크 스피닝 성형기의 유압 및 제어시스템 설계 (Design of Hydraulic & Control System for the Disc Spinning Machine)

  • 강정식;박근석;강이석
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

불확실 비선형 시스템을 위한 강인한 퍼지 모델 기반 제어기 (Design Robust Fuzzy Model-Based Controller for Uncertain Nonlinear Systems)

  • 주영훈;장욱;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.407-414
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex uncertain single-input single-output nonlinear systems. The proposed method represents the nonlinear system using a Takagi-Cugeno fuzzy model and construct a global fuzzy logic controller by blending all local state feedback controllers with a sliding mode controller. Unlike the commonly used parallel distributed compensation technique, we can design a global stable fuzzy controller without finding a common Lyapunov function for all local control systems, and can obtain good tracking performance by using sliding mode control theory. Furthermore, stability analysis is carried out not for the fuzzy model but for the real nonlinear system with uncertainties. Duffing forced oscillation sysmte is used as an example to show the effectiveness and feasibility of the proposed method.

  • PDF

강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구 (A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance)

  • 박창우;이장욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF

불확실한 비선형 시스템의 퍼지 관측기 기반의 슬라이딩 모드 제어기 설계 (Sliding Mode Controller Design Based On The Fuzzy Observer For Uncertain Nonlinear System)

  • 서호준;박장현;허성희;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.284-284
    • /
    • 2000
  • In adaptive fuzzy control systems. fuzzy systems are used to approximate the unknown plant nonlinearities. Until now. most of the papers in the field of controller design for nonlinear system using fuzzy systems considers the affine system with fixed grid-rule structure based on system state availability. This paper considers observer-based nonlinear controller and dynamic fuzzy rule structure. Adaptive laws for fuzzy parameters for state observer and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • 제3권2호
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

하이퍼볼릭 함수 기반의 퍼지 슬라이딩 모드 제어를 이용한 2바퀴 이동로봇의 경로 추종제어 (Trajectory Tracking Control for Two Wheeled Mobile Robot using Fuzzy Sliding Mode Control based Hyperbolic Function)

  • 임종욱;이상재;채창현
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, we propose a trajectory tracking controller for a two-wheeled mobile robot (WMR) with nonholonomic constraints using a fuzzy sliding-mode controller-based hyperbolic function. The proposed controller is composed of two separate controllers. The sliding-mode controller is used for attitude control of the WMR, and the fuzzy controller-based hyperbolic function is designed to adjust the reach time of the sliding-mode control. Simulation results on a linear and a circular trajectory show that the proposed controller improves the control performance. The proposed controller reduces the reach time by as much as 47% compared to the controller proposed by Xie et al.

Adaptive Fuzzy Sliding Mode Controller for Nonaffine Nonlinear Systems

  • Park, Jang-Hyun;Kim, Dong-Won;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.6-62
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Problem Formulation $\textbullet$ Feedback Linearizing Controller Design $\textbullet$ Fuzzy System to Cancel System Uncertainty $\textbullet$ Adatptive Fuzzy Sliding Mode Controller Design $\textbullet$ Simulations $\textbullet$ Conclusions

  • PDF