• Title/Summary/Keyword: Sliding device

Search Result 128, Processing Time 0.03 seconds

Sliding Mode Control of an Active Magnetic Bearing System (능동자기베어링계의 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

A Study on the Sliding Ball Joint of Parallel Kinematic Mechanism (병렬 운동 기구의 미끄럼 볼 조인트 개발에 관한 연구)

  • Yoo, Dae-Won;Lee, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.982-989
    • /
    • 2009
  • Parallel Kinematic Mechanism (PKM) is a device to perform the various motion in three-dimensional space and it calls for six degree of freedom. For example, Parallel Kinematic Mechanism is applied to machine tools, medical equipments, MEMS, virtual reality devices and flight motion simulators. Recently, many companies have tried to develop new Parallel Kinematic Mechanism in order to improve the cycle time and the precisional tolerance. Parallel Kinematic Mechanism uses general universal joint and spherical joint, but such joints have accumulated tolerance problems. Therefore, it causes position control problem and dramatically life time reduction. This paper focused on the rolling element to improve sliding precision in new sliding ball joint development. Before the final design and production, it was confirmed that new sliding ball joint held a higher load and a good geometrical structure. FEM analysis showed a favorable agreement with tensile and compressive testing results by universal testing machine. In conclusions, a new sliding ball joint has been developed to solve a problem of accumulated tolerance and verified using tensile and compressive testing as well as FEM analysis.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

Development of a double-sliding friction damper (DSFD)

  • Shen, Shaodong;Pan, Peng;Sun, Jiangbo;Gong, Runhua;Wang, Haishen;Li, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • In practical engineering, the friction damper is a widely used energy dissipation device because of its large deformation capacity, stable energy dissipation capability, and cost effectiveness. While based on conventional friction dampers, the double-sliding friction damper (DSFD) being proposed is different in that it features two sliding friction forces, i.e., small and large sliding friction forces, rather than a single-sliding friction force of ordinary friction dampers. The DSFD starts to deform when the force sustained exceeds the small-sliding friction force, and stops deforming when the deformation reaches a certain value. If the force sustained exceeds the large sliding friction force, it continues to deform. Such a double-sliding behavior is expected to endow structures equipped with the DSFD better performance in both small and large earthquakes. The configuration and working mechanism of the DSFD is described and analyzed. Quasi-static loading tests and finite element analyses were conducted to investigate its hysteretic behavior. Finally, time history analysis of the single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems were performed to investigate the seismic performance of DSFD-equipped structures. For the purpose of comparison, tests on systems equipped with conventional friction dampers were also performed. The proposed DSFD can be realized perfectly, and the DSFD-equipped structures provide better performances than those equipped with conventional friction dampers in terms of interstory drift and floor acceleration. In particular, for the MDOF system, the DSFD helps the structural system to have a uniform distributed interstory drift.

An FPGA implementation of phasor measurement algorithm for single-tone signal (단일 톤 신호의 페이저 측정기법 및 FPGA구현)

  • 안병선;김종윤;장태규
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.171-174
    • /
    • 2002
  • This paper presents an implementation method of phasor measurement device, which is based on the FPGA implementation of the sliding-DFT The design is verified by the timing simulation of its operation. The error effect of coefficient approximation and frequency deviation in the recursive implementation of the sliding-DFT is analytically derived and verified with the computer simulations.

  • PDF

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

Evaluation of a Possibility of Estimation of Reaction Force of Surgical Robot Instrument using Sliding Perturbation Observer (슬라이딩 섭동 관측기를 이용한 수술용 로봇 인스트루먼트의 반력 추정 가능성 평가)

  • Yoon, Sung-Min;Lee, Min-Cheol;Kim, Chi-Yen;Kang, Byeong-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • In spite of the difficulties and uncertain characteristic of cable driven method, surgical robot instrument has adopted it as driving mechanism for various reasons. To overcome the problem of cable system, previous research applied SMCSPO (sliding mode control with sliding perturbation observer) algorithm as robust controller to control the instrument and found that the value of SPO (sliding perturbation observer) followed force disturbance, reaction force loaded on the tip very similarly. Thus, this paper confirms that the perturbation observer is sufficient estimator which finds out the mount of loaded force on the surgical robot instrument. To prove the proposition, simulation using the similar model with an actual instrument and experimental evaluation are performed. The results show that it is possible to substitute SPO for sensors to measure the reaction force. This estimated reaction force will be used to realize haptic function by sending the reaction force to a master device for a surgeon. The results will contribute to create surgical benefit such as shortening the practice time of a surgeon and giving haptic information to surgeon by using it as haptic signal to protect an organ by making force boundary.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

Analysis of Wear Characteristics for Sliding Members of Hydraulic Rotary Actuator (유압피스톤 습동재료의 마멸특성 해석)

  • 김성희;김동호;이광영;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.101-108
    • /
    • 1999
  • This paper was undertaken to do morphological analysis of wear particles for sliding members hydrauric rotary acuator. The lubricating wear test was performed under different experimental conditions using the wear test device and wear specimens of the pin on disk type was rubbed in paraffinic base oil by three kinds of lubricating materials, varying applied load, sliding distance. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) are used for morphological analysis of wear particles. The results showed that the four shape parameters of wear particles depend on a kind of the lubricating materials. It was capable of presuming wear volume for three kinds of materials on driving time.

  • PDF