• 제목/요약/키워드: Sliding behavior

검색결과 550건 처리시간 0.022초

Zr 합금에서 Nb과 Sn의 함량에 따른 마멸특성분석 (Analysis of wear properties in Zr alloys with variation of Nb and Sn content)

  • 이영호;김형규
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.64-71
    • /
    • 2003
  • In order to evaluate the effect of alloying elements (Nb and Sn) on the wear resistance of advanced Zr fuel claddings, sliding wear tests have been performed in room temperature air and water and these results were compared with those of commercial alloys such as Zircaloy-4, A and B alloys. As a result, the advanced Zr fuel claddings have a similar wear resistance compared with the commercial alloys. The wear resistance of the advanced Zr fuel claddings is closely releted to the content of Nb and Sn even though the effects of transition elements are involved in deforming wear properties. In the tested specimens with similar Sn content, wear volume became down to a minimum at $0.4\;wt\;\%$ Nb, then rapidly increased at 1.0 wt Nb. This behavior results in the variation of grain size with alloying contents. But Sn did not have a significant effect on the wear volume of advanced Zr fuel claddings below $1.1\;wt\%$. The relationship between alloying elements and wear behaviour was evaluated and discussed using material compatibility factor.

  • PDF

Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰 (Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior)

  • 이태우;강계명
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

AlSiMg/TiC 복합 용사피막 : 마모 특성 (II) (Thermal Sprayed AlSiMg/TiC Composite Coatings : Wear Characteristics (II))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.105-111
    • /
    • 2000
  • The wear behavior of thermal sprayed AlSiMg-40TiC composite coatings were studied as a function of load and sliding velocity under unlubricated conditions. Experiments were performed using a block-on-ring(WC-6wt%/Co, Hv 1500) type. The tests were carried out a various load(30∼ 125.5N) and sliding velocity(0.5∼2.0m/s). Three wear rate regions were observed in the AlSiMg-40TiC composite coatings. The wear rate in region I at low load (less then 8N( were less than 1×{TEX}$10^{-5}${/TEX}㎣/m. Low wear rates in region I resulted from the load-bearing capacity of TiC particles. The transition from region I to II occurred when the applied load exceeded the fracture and pull-out strength of the particles. The TiC fractured particles trapped between the specimen and the counterface acted as third-body abrasive wear. The subsurface layer worn surface in region II was composed of the mechanically mixed layer (MML). The wear rate increase abruptly above a critical load (region III). The high wear rate in region III was induced by frictional temperature and involves massive surface damage.

  • PDF

$\gamma$-TiAl 합금의 고온변형 및 Cavity 형성 연구 (A Study on the High Temperature Deformation and the Cavity Initiation of Gamma TiAl Alloy)

  • 김정한;하태권;장영원;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2001
  • The high temperature deformation behavior of two-phase gamma TiAl alloy has been investigated with the variation of temperature and ${\gamma}/{\alpha}_2$ volume fraction. For this purpose, a series of load relaxation tests and tensile tests have been conducted at temperature ranging from 800 to $1050^{\circ}C$. In the early stage of the deformation as in the load relaxation test experimental flow curves of the fine-grained TiAl alloy are well fitted with the combined curves of two processes (grain matrix deformation and dislocation climb) in the inelastic deformation theory. The evidence of grain boundary sliding has not been observed at this stage. However, when the amount of deformation is large (${\epsilon}{\approx}$ 0.8), flow curves significantly changes its shape indicating that grain boundary sliding also operates at this stage, which has been attributed to the occurrence of dynamic recrystallization during the deformation. With the increase in the volume fraction of ${\alpha}_2$-phase, the flow stress for grain matrix deformation increases since ${\alpha}_2$-Phase is considered as hard phase acting as barrier for dislocation movement. It is considered that cavity initiation is more probable to occur at ${\alpha}_2/{\gamma}$ interface rather than at ${\gamma}/{\gamma}$ interface.

  • PDF

(TiB+TiC) 입자강화 Ti기 복합재료의 접촉하중에 따른 내마모 특성 (Effect of Contact Load on Wear Property of (TiB+TiC) Particulates Reinforced Titanium Matrix Composites)

  • 최봉재
    • 한국주조공학회지
    • /
    • 제37권4호
    • /
    • pp.115-122
    • /
    • 2017
  • The aim of this research is to evaluate the wear properties of (TiB+TiC) paticulate reinforced titanium matrix composites (TMCs) by in-situ synthesis. Different particle sizes (1500, $150{\mu}m$) and contents (0.94, 1.88 and 3.76 mass% for Ti, 1.98 and 3.96 mass% for the Ti6Al4V alloy) of boron carbide were added to pure titanium and to a Ti6Al4V alloy matrix during vacuum induction melting to provide 5, 10 and 20 vol.% (TiB+TiC) particulate reinforcement amounts. The wear behavior of the (TiB+TiC) particulate reinforced TMCs is described in detail with regard to the coefficient of friction, the hardness, and the degree of reinforcement fragmentation during sliding wear. The worn surfaces of each sliding wear condition are shown for the three types of wear studied here: transfer layer wear, particle cohesion wear and the development of abrasive areas. The fine reinforcements of TMCs were easily fragmented from the Ti matrix as compared to coarse reinforcements, and fragmented debris accelerated the decrease in the wear resistance.

스크롤 컴프레서 팁실의 마찰특성 (Friction Characteristics of the Tip Seal in a Scroll Compressor)

  • 정봉수
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

Cu-TiB2 복합재료의 마모거동에 관한 연구 (A Study on the Wear Behavior of the Cu-TiB2 Composites)

  • 김정남;최종운;강계명
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.61-65
    • /
    • 2005
  • The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구 (Molecular Simulation of Influence of Surface Energy on Water Lubrication)

  • 김현준
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Ti-Al-Si-N 코팅막의 마모거동에 미치는 Si 함량의 영향 (The Effect of Si Content on the Tribological Behaviors of Ti-Al-Si-N Coating Layers)

  • 진형호;김정욱;김광호;윤석영
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.88-93
    • /
    • 2005
  • 아크 이온 플레이팅과 스퍼터로 구성된 하이브리드 시스템을 이용하여 다성분계 Ti-Al-Si-N 코팅막을 WC-Co 기판에 증착하였다. 증착시 Si 함량을 변화시켜 코팅막의 마모특성에 Si 함량이 미치는 영향에 대하여 조사하였다. 마모 특성을 관찰하기 위하여 Ti-Al-Si-N 코팅막이 증착된 WC-Co 원판에 3N의 하중, 0.1 m/s의 속도로 볼 온 디스크(ball-on-disk) 형태의 마모시험기를 이용하여 건식 마모 실험을 하였다. 상대재로는 스틸볼과 지르코니아볼을 사용하였다. 상대재가 스틸볼의 경우 Ti-Al-Si-N 코팅막의 마찰계수가 Ti-Al-N 코팅막의 마찰계수보다 낮게 나타났다 이는 Si가 첨가되어 마모시 상대재와 코팅막 사이에 자기윤활효과(self-lubricant effect)에 의한 것으로 여겨진다. 코팅막과 스틸볼 사이에 응착 마모 거동을 보였으며, Si의 함량이 증가함에 따라 마찰계수는 감소하였다. 한편, 상대재가 지르코니아 볼의 경우 코팅막과 지르코니아 볼 사이에서 연삭마모 거동이 더 지배적이었고, Si 함량이 증가할수록 마찰계수는 증가하였다.

슬라이딩 거더를 가진 라멘의 온도거동과 구조효율 (Thermal Behavior and Structral Efficiency of Rahmen with Sliding-Girder)

  • 정달영;정창현;임성순
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2020
  • 일반라멘가교의 거동에 영향을 미치는 여러 하중들 중에서 온도하중은 중요한 하중임에도 불구하고 이에 대한 충분한 검토가 부족한 실정이다. 일반라멘가교의 온도하중에 의한 응력을 감소시키기 위해서는 열변형으로 인한 거더의 수평변위는 자유롭고, 발생내력은 최소가 되도록 하여야 한다. 슬라이딩가교는 일반라멘가교와 달리 온도하중으로 인한 축방향 변형을 허용하여 축응력을 감소시키고 휨응력은 전달시키는 구조이다. 본 연구는 슬라이딩거더를 가진 라멘가교의 온도거동과 구조효율성을 일반라멘가교와 비교하여 분석하였다. 분석을 위하여 경간장 10, 20, 30, 40m, 교각높이 2, 4, 6m의 경우에 대하여 일반라멘가교와 슬라이딩가교의 구조해석을 수행하였다. 하중은 연직 고정하중과 축방향 온도하중을 재하하고, 마찰계수는 매끄러운 상태와 윤활상태의 중간인 0.4를 적용하였다. 구조해석결과 슬라이딩가교는 온도하중 증가에 관계없이 경간장 증가에 따라 응력이 증가하며 일반라멘가교는 온도가 증가하거나 경간장이 증가할수록 응력이 증가하였다. 일반라멘가교에 비해 슬라이딩가교의 거더 중앙부 응력은 20에서 50%, 교각 하단부 응력은 50에서 90% 감소하였다. 따라서 온도하중이 작용하는 슬라이딩가교는 축응력이 감소하며 동일 제원의 일반라멘가교와 비교하여 구조효율성을 확보할 수 있다.