• Title/Summary/Keyword: Sliding Type

Search Result 588, Processing Time 0.037 seconds

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Vibration control of a single-link flexible manipulator using fuzzy- sliding modes (퍼지-슬라이딩 모드를 이용한 단일링크 유연 매니퓰레이터의 진동제어)

  • Choi, Seung-Bok
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 1996
  • This paper presents a new type of fuzzy-sliding mode controller for robust tip position control of a single-link flexible manipulator subjected to parameter variations. A sliding mode controller is formulated with an assumption that imposed parameter variations are bounded so that certain deterministic performance can be guaranted. In the design of the sliding mode controller, so called moving sliding surface is adopted to minimize the reaching phase and thus mitigate system sensitivity to the variations. The sliding mode controller is then incorporated with a fuzzy technique to reduce inherently ever-existing chattering which is impediment in position control of flexible manipulators. A set of fuzzy parameters and control rules are obtained from a relation between predetermined sliding surface and representative points in the state space. Computer simulations are undertaken in order to demonstrate superior control performance of the proposed methodology.

  • PDF

Tribological Behavior of Boundary Lubricated Sliding Surfaces Using Three Different Spacing of Surface Profiles

  • Oh, Se-Doo;Lee, Young-Ze
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1428-1434
    • /
    • 2002
  • The ball-on-disk type sliding tests with boundary lubricated steels were carried out to verify the effect of initial spacing in surface profiles on wear and scuffing. Three kinds of surface spacing, which are closely related with initial surface micro-cracks on sliding surfaces, were produced on AISI 1045 steel surfaces using different grinding and polishing processes. Frictional forces and time to scuffing were measured, and the shape and amount of wear particles were analyzed to compare the with original surface profiles. From the tests, it was confirmed that the size of wear particles are related closely to the original spacing of the surface profile. The time to failure and amount of wear were sensitive to the surface spacing. The wider surface spacing shows much longer sliding life and smaller amount of wear than the others. Time to scuffing was increased with increasing surface pro(lie spacing. The size of wear particles increased while the wear and wear rate K were decreased with an increase in surface spacing. After the sliding tests, surface cracks of inner parts of the wear track formed due to scuffing were observed and compared among the specimens having the different surface spacing.

Effects of Humidity and Sliding Speed on the Wear Behavior of Silicon Nitride Ceramics (습도 및 미끄럼속도가 질화규소의 마멸거동에 미치는 영향에 관한 연구)

  • 이기현;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2597-2605
    • /
    • 1994
  • The wear behavior of two types of $Si_3N_4$ exposed to high and low humidity was examined at various sliding speeds, using bearing steel as disk material under pin-on-disk type sliding conditions. Higher wear rates were obtained at a high humidity than at a low humidity. As the sliding speed was increased, the wear rates were decreased and the effect of humidity on the wear rates of $Si_3N_4$ was reduced. The result that the $Si_3N_4$ pin showed higher wear rate under the high humidity condition was explained by the decrease in microhardness of $Si_3N_4$ due to the chemisorbed moisture on the pin and plowing action by the hard particles of $Fe_2O_3$ from the disk. An increase in the sliding speed is supposed to reduce the effect of humidity on the wear rate of $Si_3N_4$ by raising the average temperature of the disk surface and the local temperature at pin-disk contact point.

Friction Characteristics of Magnetic Clutch Used in Automobiles (차량용 마그네틱 클러치의 마찰 특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.243-249
    • /
    • 2009
  • A magnetic clutch consists of pulley and disk. It delivers and isolates the power needed for the operation of the compressor used in automotive air conditioning system. To improve the performance, efficiency and durability of automotive air conditioning system, appropriate design of pulley, disk and system working parameters(the magnitude of magnetic force, and so on) is necessary. For that goal, it is required to understand the friction characteristics of magnetic clutch for the initial operating time. In this study, friction tests were carried out in order to investigate the effect of sliding velocity on the friction characteristics of magnetic clutch using pin-on-disk type friction and wear tester. For experiments, pulley and disk used in real automotive air conditioning system were considered. Friction experiments were conducted under various sliding velocities, and coefficients of kinetic friction were obtained. Under the experimental conditions considered in this study, the coefficients of kinetic friction increased with the increase of test number(sliding distance) and decreased with the increase of sliding velocity.

One-touch Descending Lifeline with Sliding Linkage Structure (슬라이드 링크 구조를 이용한 원터치 완강기)

  • Kim, Wonchan;Na, Dayul;Moon, Hyein;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.42-47
    • /
    • 2021
  • A one-touch descending lifeline that can easily be installed and rapidly evacuated in the event of a fire accident in high-rise buildings was proposed to overcome difficulties of conventional descending lifeline such as complex installation methods and procedures. However, this lifeline exhibits limitations such as restrictions in installation location and large apparatus size. Therefore, this paper proposes a sliding-type descending lifeline, which has a similar operation to that of current one-touch descending lifeline and solves the aforementioned limitations. A double square link mechanism including a sliding four-bar linkage is proposed and the descending lifeline support is redesigned to unfold in two different planes, allowing 3D movement. Additionally, the shape of the support frame is designed to obtain two attachment surfaces that can be attached to a wall, irrespective of the angle between the window and the inner wall. FEA analysis using ABAQUS is performed to ensure that the robustness of the presented support complies with the Fire Control Act Enforcement Decree. Finally, the feasibility of the proposed sliding one-touch descending lifeline is verified through fabrication.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

A Study on Turbine Bypass System in a 500MW Rated Coal Fired Supercritical Thermal Power Plant with Sliding Pressure Operation (변압운전 방식의 500MW 초임계압 석탄 화력발전소 터빈 우회계통에 제어에 관한 고찰)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1663-1664
    • /
    • 2008
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operations and of drum type steam generators with circulation type boilers. But, nowadays almost all of them were of high efficiency, of supercritical pressure, of big capacity, of sliding pressure operations, and of once through type steam generators. Presently built once through boilers introduce turbine bypass systems to variable pressure operation which eliminates unexpected materials in boiler tube during startup, minimizes fuel loss by short startup period and eventually improve both total efficiency and power system stability.

  • PDF