• Title/Summary/Keyword: Sliding Mode Control

Search Result 1,387, Processing Time 0.045 seconds

High Speed Position Control Method of a Linear DC Motor (리니어 직류 모터의 고속 위치 제어방식)

  • 엄기환;선동설;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • This paper proposed a minmum time control method by a parabolic switching function to high speed position control, with high accuracy, of a Linear OC Motor A proposed method is organized simply and a bang-bang control's signal switched on a parabola type switching function in the phase for a minimum time control realization. However, a sliding mode occurs owing to system's modelling errors, so the minimum time control is realized a once switching bang-bang control by repeating trial experiments. Next time, in a neighborhood of the origin in the phase plane, a Linear OC Motor is stopped at the origin by the linear feedback control.

  • PDF

Variable Structure Control with Fuzzy Reaching Law Method Using Genetic Algorithm

  • Sagong, Seong-Dae;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1430-1434
    • /
    • 2003
  • In this paper, for the fuzzy-reaching law method which has the characteristic of elimination of chattering at sliding mode as well as the characteristic of fast response at the design of variable structure controller with reaching law, optimal solutions for the determination of parameters of fuzzy membership functions by using genetic algorithm are proposed. Generally, the design of fuzzy controller has difficulties in determining the parameters of fuzzy membership functions by using a tedious trial-and-error process. To overcome these difficulties, this paper develops genetic algorithm of an optimal searching method based on genetic operation, and to verify the validity of this proposed method it is simulated through 2 link robot manipulator.

  • PDF

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

Experimental and Simulation Results for Sliding Mode Dynamic Wind Turbine Control using a DC Chopper

  • Riahy G.;Freere P.;Holmes D.G
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.650-655
    • /
    • 2001
  • Wind speeds can vary rapidly and wind turbines cannot easily follow these variations because of their inertia and aerodynamic characteristics. For maximum energy extraction. the turbine blades should operate at their optimum tip speed ratio, but with rapid changes in wind speed. this is usually not possible. To improve the energy extraction from turbulent wind, it is necessary to establish an effective measure of the high frequency component of the wind. and then to use this measure to optimise the operation of the turbine controller for maximum energy extraction. This paper presents an approach for combining readings from three anemometers into a composite wind speed measurement. and using this signal to control the operation of a permanent magnet generator to achieve maximum energy extraction. The method combines simulation and experimental investigations into a heuristic algorithm. and demonstrates its effectiveness with field trials.

  • PDF

Position Control of Permanent Magnetic Synchronous Motor Using Variable Structure System Theory (가변구조 제어이론에 의한 영구자석 동기모터의 위치제어)

  • Ki, S.W.;Chung, K.H.;Joo, S.W.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.552-554
    • /
    • 1991
  • In this paper is applied Sliding Mode method to position control system with Permanent Magnetic Synchronous Motor (PMSM), with realized a Digital Controller with Micro-Processor. And also, this paper proposes an Algorithm to compen-sate chattering of torque current to added controled parameter to continuous function of torque current.

  • PDF

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.

A Study on the Controller Design for PEM Fuel Cell Systems (고분자연료전지 발전시스템의 제어기설계에 관한 연구)

  • Kim, Enug-Seok;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1132_1133
    • /
    • 2009
  • In this paper, a observer-based PI controller will be developed for PEM fuel cell system. Nonlinear model of PEM fuel cell system is introduced to study the controller design problems. Sliding mode observer will be designed to estimate the cathode and anode pressures of PEMFC system. And a nonlinear state observer is also designed to estimate the other states such as supply manifold pressure, Oxygen pressure, Hydrogen pressure, return manifold pressure, etc. These estimated states are used to design the observer-based PI controller. The validity of the proposed controller will be verified by using computer simulation.

  • PDF

Takagi-Sugeno Fuzzy Controller for Efficiency Optimization of Induction Motor with Model Uncertainties (Takagi-Sugeno 퍼지 제어기를 이용한 불확실성을 포함한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1646_1647
    • /
    • 2009
  • In this paper, Takagi-Sugeno(T-S) fuzzy controller and search method are developed for efficiency optimization of induction motors(IMs). The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of T-S fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is used to control of speed of IMs. Simulation results are presented to validate the proposed controller.

  • PDF

리니어모터 스테이지 진직도 보상 제어

  • Gang, Min-Sik;Choe, Jeong-Deok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

A study on the development of polishing robot system attached to machining center for curved surface die (머시닝센터 장착형 곡면금형 연마용 로봇 시스템 개발에 관한 연구)

  • 하덕주;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1312-1315
    • /
    • 1996
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. But workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries such as Japan. In this research we develop a polishing robot with 2 degrees of freedom motion and pneumatic system, and attach it to machining center with 3 degrees of freedom to form an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The developed polishing robot is controlled by real time sliding mode control using DSP(digital signal processor). A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed polishing robot.

  • PDF